推导一个向量逆时针绕起点旋转α度后得到的向量

匿名 (未验证) 提交于 2019-12-02 23:43:01

向量(x, y)逆时针绕起点旋转α\alpha度后得到的向量(x’, y’):


x=xcosαysinαx' = xcos\alpha - ysin\alpha
y=xsinα+ycosαy' = xsin\alpha+ ycos\alpha

推导过程:

d=x2+y2d = \sqrt{x^2+y^2}

cosθ=x/dcos\theta = x/d
sinθ=y/dsin\theta = y/d

cos(θ+α)=x/dcos(\theta+\alpha) = x' /d
sin(θ+α)=y/dsin(\theta+\alpha) = y' /d

由:
cos(α+θ)=cosαcosθsinαsinθcos(\alpha+\theta) = cos\alpha cos\theta - sin\alpha sin\theta
sin(α+θ)=sinαcosθ+cosαsinθsin(\alpha+\theta) = sin\alpha cos\theta + cos\alpha sin\theta

得:
cos(θ+α)=cosαcosθsinαsinθcos(\theta+\alpha) = cos\alpha cos\theta - sin\alpha sin\theta

=cosαxdsinαyd=xd = cos\alpha\frac{x}{d} - sin\alpha \frac{y}{d} = \frac{ x'}{d}

sin(θ+α)=sinαcosθ+cosαsinθsin(\theta+\alpha) = sin\alpha cos\theta + cos\alpha sin\theta

=sinαxd+cosαyd=yd = sin\alpha\frac{x}{d} + cos\alpha \frac{y}{d} = \frac{ y'}{d}

消除dd得:
x=cosαxsinαyx' = cos\alpha\cdot x - sin\alpha\cdot y

y=sinαx+cosαyy' = sin\alpha\cdot x + cos\alpha\cdot y

文章来源: https://blog.csdn.net/liuzhuomei0911/article/details/92250989
标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!