sift算法

ORB特征匹配原理及源代码

有些话、适合烂在心里 提交于 2020-03-12 03:30:24
  这篇往后,会暂时先更ORB、SITF、SURF三篇特征算子,在代码部分,会在本篇介绍下OPENCV特征匹配的特征点KeyPoint、特征描述子和匹配算子Match等的构成。 一、背景:   目前特征匹配算子主要应用于目标追踪、图像匹配等多个方面,效果比较好的有SIFT、SURF、ORB等特征匹配算子,SURF由在SIFT上改进得到。目前暂更ORB、SIFT和SURF三种特征匹配算子。在此,先简要介绍下三种算子,ORB采用FAST进行特征点检测,相对于SIFT和SURF具有运行速度快的优点,OBR算法推出晚于SIFT和SURF算法,运行速度优于SIFT和SURF(网上可以搜到三者运行速度差距,在此不再展示),主要应用于实时图像匹配。SIFT和SURF具有更好的稳定性,SURF是SIFT的改进版本,运行速度和匹配效果均优于SIFT。(在此介绍SIFT,是希望读者了解其中的算法,SIFT在最初的特征匹配上,有比较好的效果。同时希望,读者如果有兴趣,可以继续改进SIFT,万一再研究出个SXXXX,发表论文、申请专利呢???hhhhh)。 二、ORB特征匹配原理:    特征匹配的步骤一般可分为3步:1.检测特征点,2.计算特征点的描述子,3.根据特征点的描述子进行特征点匹配。 ORB特征点检测:   1.ORB在特征点检测部分,采用FAST算法进行特征点检测