基于深度学习的命名实体识别与关系抽取
基于深度学习的命名实体识别与关系抽取 【备注:此博文初次编辑为2019年12月19日,最新编辑为2019年12月19日】 摘要:构建知识图谱包含四个主要的步骤:数据获取、知识抽取、知识融合和知识加工。其中最主要的步骤是知识抽取。知识抽取包括三个要素:命名实体识别(NER)、实体关系抽取(RE) 和 属性抽取。其中属性抽取可以使用python爬虫爬取百度百科、维基百科等网站,操作较为简单,因此命名实体识别(NER)和实体关系抽取(RE)是知识抽取中非常重要的部分,同时其作为自然语言处理(NLP)中最遇到的问题一直以来是科研的研究方向之一。 本文将以深度学习的角度,对命名实体识别和关系抽取进行分析,在阅读本文之前,读者需要了解深度神经网络的基本原理、知识图谱的基本内容以及关于循环神经网络的模型。可参考本人编写的博文:(1)基于深度学习的知识图谱综述;(2)[深度神经网络];(3)(https://blog.csdn.net/qq_36426650/article/details/84398458)。 本文的主要结构如下,首先引入知识抽取的相关概念;其次对词向量(word2vec)做分析;然后详细讲解循环神经网络(RNN)、长短期记忆神经网络(LSTM)、门控神经单元模型(GRU);了解基于文本的卷积神经网络模型(Text-CNN);讲解隐马尔可夫模型(HMM