离散傅里叶变换
傅里叶变换将信号分解为正弦波,离散傅里叶变换DFT基于数字信号。real DFT是将输入输出信号都用实数表示,一般用复数DFT,但实数DFT是基础。 傅里叶变换族 傅里叶变换是傅里叶在研究热传导时发现的,他提出用正弦波代表温度分布并向法兰西学会提交论文。但当时的法兰西学会权威拉格朗日对此理论并不赞成,拉格朗日认为傅里叶的方法不能代表非连续信号。实际上拉格朗日某些条件下是对的,因为正弦波之和确实无法表示非连续信号,但却可以无限接近,即两者能量无限接近。这种现象叫做吉布斯效应。当信号为离散信号时傅里叶分解完全成立,拉格朗日所拒绝的是连续信号。 一个16点长度信号被分解为正弦信号和余弦信号,如下图所示: 如上图所示傅里叶分解将此信号分解为9个正弦信号和9个余弦信号。每个都有不同的幅度和频率。至于为何选用正弦波而不是三角波或者方波进行分解,这主要正弦信号特有的特性:正弦信号保真度。正弦信号输入到一个系统中其输出仍为正弦信号,其频率和波形保持不变,只有其幅度和相位发生改变。正弦曲线是唯一有此特性的波。 傅里叶变换可以根据4种不同信号分为4类,信号可以是离散或者连续的,也可能是周期的或者非周期的。因此可以分为以下4类: 非周期连续 这种信号傅里叶变换简单的叫做傅里叶变换FT 周期连续 这种信号傅里叶变换叫做傅里叶级数FS 非周期离散 这种信号傅里叶变换叫做离散时间傅里叶变换DTFT 周期离散