时域分析

傅里叶变换和拉普拉斯变换的物理解释及区别

雨燕双飞 提交于 2019-12-04 04:10:05
“ 傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 ” 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。 理解的关键是:一个连续的信号可以看作是一个个小信号的叠加,从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割,每一部分只是一个时间点对应一个信号值,一个信号是一组这样的分量的叠加。傅里叶变换后,其实还是个叠加问题,只不过是从频率的角度去叠加,只不过每个小信号是一个时间域上覆盖整个区间的信号,但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值),我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话 ,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。

信号分析——从傅里叶变化到FFT

不羁岁月 提交于 2019-11-28 15:25:15
我们眼中的世界就像皮影戏的大幕布,幕布的后面有无数的齿轮,大齿轮带动小齿轮,小齿轮再带动更小的。 在最外面的小齿轮上有一个小人——那就是我们自己。 我们只看到这个小人毫无规律的在幕布前表演,却无法预测他下一步会去哪。 而幕布后面的齿轮却永远一直那样不停的旋转,永不停歇。 ——这就是对傅里叶世界观的描述。 你眼中看似落叶纷飞变化无常的世界,实际只是躺在上帝怀中一份早已谱好的乐章。 下面进入正式环节↓↓↓↓↓↓ 傅里叶公式: 其中: 这就是鼎鼎大名的傅里叶公式! 简单的理解: 每一个信号,在某个特定的配方下, 都可以由简单的正弦曲线组成 。傅里叶男爵猜测任意周期函数都可以写成三角函数之和。具体需要多少呢?无数个!【嘿, 上帝才不会让你这么简单的就发现他】 (插入题外话:为什么是男爵呢?傅里叶大佬曾经跟着拿破仑混过) 傅里叶原理表明:任何连续测量的时序或信号,都可以表示为不同频率的正弦波信号的 无限叠加。 而根据该原理创立的傅立叶变换算法利用直接测量到的原始信号,以累加方式来计算该信号中不同正弦波信号的频率、振幅和相位。 深入理解看这里:https://www.matongxue.com/madocs/619.html 为什么信号分析采用傅里叶变换? 时域信号在经过傅立叶变换的分解之后,变为了不同正弦波信号的叠加,我们再去分析这些正弦波的频率,可以将一个信号变换到频域。