04 基于神经网络的逻辑回归实现 - 神经网络和深度学习 [Deep Learning Specialization系列]
本文是 Deep Learning Specialization 系列课程的第1课《 Neural Networks and Deep Learning 》中Logistic Regression with a Neural Network mindset练习部分的笔记。 在《 02 神经网络 - 神经网络和深度学习 [Deep Learning Specialization系列] 》中,我们了解了神经网络的大部分理论知识。通过该编程实例,我们能构建一个简答的逻辑回归的分类器来识别猫,以复习神经网路的知识并了解具体的编程实现。 概述 本试验使用的是 h5 格式的数据集,该数据集包含有标注结果的训练数据和测试数据,通过以下7个步骤来完成神经网络的训练和预测: 数据加载 数据处理 参数初始化 逻辑回归函数的实现(正向传播) 损失/代价函数的实现(正向传播) 梯度递减算法的实现(反向传播) 预测 1. 数据加载 h5 格式的数据的读取是通过 h5py 库来实现的,简单的介绍可以参考我的上一篇文章《 h5py - HDF5 for Python的简单入门 》。 首先构建一个 load_dataset() 函数来完成数据的加载,该函数通过 h5py.File() 函数来读取 h5 格式的数据文件,将训练数据和测试数据做一个简单处理后,输出 train_set_x_orig , train