神经网络模型

马里奥AI实现方式探索 ——神经网络+增强学习

元气小坏坏 提交于 2020-02-28 08:44:28
目录 马里奥AI实现方式探索 ——神经网络+增强学习 神经网络 M-P模型 早期神经网络 深度神经网络 总结 增强学习 马尔可夫决策过程(MDP) 基于NEAT算法的马里奥AI实现 基于Deep Reinforcement Learning的马里奥AI实现 总结 马里奥AI实现方式探索 ——神经网络+增强学习 儿时我们都曾有过一个经典游戏的体验,就是马里奥(顶蘑菇^v^),这次里约奥运会闭幕式,日本作为2020年东京奥运会的东道主,安倍最后也已经典的马里奥形象出现。平时我们都是人来玩马里奥游戏,能否可以让马里奥智能的自己闯关个呢?OK,利用人工智能的相关算法来进行自动化通关一直是一个热门的话题,最近最火的相关东东就是传说中的alphaGo啦。而在游戏的自动化测试当中,这种算法也是非常实用的,可以大量的减少测试人力成本。 首先,对于实现马里奥AI当中涉及到的神经网络和增强学习的相关概念进行整理,之后对智能通关的两种方式进行阐述。(本人才疏学浅,在神经网络和增强学习方面基本门外汉,如有任何纰漏,还请大神指出,我会第一时间改正。) 神经网络 像飞机的灵感来源于鸟类,雷达的灵感来源于蝙蝠,红外线的灵盖来源于蛇,而本文要讨论的神经网络灵感来源于我们自己,人类大脑的神经元结构。从神经元结构被提出,到时下火热的无以复加的深度神经网络,发展过程也可为一波三折。我们按照时间的顺序

零基础入门深度学习(三):卷积神经网络基础之初识卷积

北城余情 提交于 2020-02-27 09:27:19
课程名称 | 零基础入门深度学习 授课讲师 | 孙高峰 百度深度学习技术平台部资深研发工程师 授课时间 | 每周二、周四晚20:00-21:00 编辑整理 | 孙高峰 内容来源 | 百度飞桨深度学习集训营 出品平台 | 百度飞桨 01 导读 本课程是百度官方开设的零基础入门深度学习课程,主要面向没有深度学习技术基础或者基础薄弱的同学,帮助大家在深度学习领域实现从0到1+的跨越。从本课程中,你将学习到: 深度学习基础知识 numpy实现神经网络构建和梯度下降算法 计算机视觉领域主要方向的原理、实践 自然语言处理领域主要方向的原理、实践 个性化推荐算法的原理、实践 本周为开讲第三周,百度深度学习技术平台部资深研发工程师孙高峰,开始讲解深度学习在计算机视觉方向实践应用。今天为大家带来的是卷积神经网络基础之初识卷积。 02 计算机视觉概述 计算机视觉作为一门让机器学会如何去“看”的科学学科,具体的说,就是让机器去识别摄像机拍摄的图片或视频中的物体,检测出物体所在的位置,并对目标物体进行跟踪,从而理解并描述出图片或视频里的场景和故事,以此来模拟人脑视觉系统。因此,计算机视觉也通常被叫做机器视觉,其目的是建立能够从图像或者视频中“感知”信息的人工系统。 计算机视觉技术经过几十年的发展,已经在交通(车牌识别、道路违章抓拍)、安防(人脸闸机、小区监控)、金融(刷脸支付、柜台的自动票据识别)、医疗

深度学习概述:从感知机到深度网络

吃可爱长大的小学妹 提交于 2020-02-24 21:08:53
  (注:本文译自一篇博客,作者行文较随意,我尽量按原意翻译,但作者所介绍的知识还是非常好的,包括例子的选择、理论的介绍都很到位,由浅入深, 源文地址 )   近些年来,人工智能领域又活跃起来,除了传统了学术圈外,Google、Microsoft、facebook等工业界优秀企业也纷纷成立相关研究团队,并取得了很多令人瞩目的成果。这要归功于社交网络用户产生的大量数据,这些数据大都是原始数据,需要被进一步分析处理;还要归功于廉价而又强大的计算资源的出现,比如GPGPU的快速发展。   除去这些因素,AI尤其是机器学习领域出现的一股新潮流很大程度上推动了这次复兴——深度学习。本文中我将介绍深度学习背后的关键概念及算法,从最简单的元素开始并以此为基础进行下一步构建。   (本文作者也是Java deep learning library的作者,可以从 此处 获得,本文中的例子就是使用这个库实现的。如果你喜欢,可以在Github上给个星~。用法介绍也可以从 此处 获得) 机器学习基础   如果你不太熟悉相关知识,通常的机器学习过程如下:     1、机器学习算法需要输入少量标记好的样本,比如10张小狗的照片,其中1张标记为1(意为狗)其它的标记为0(意为不是狗)——本文主要使用监督式、二叉分类。     2、这些算法“学习”怎么样正确将狗的图片分类,然后再输入一个新的图片时

[Deep Learning] 神经网络基础

谁都会走 提交于 2020-02-24 21:02:12
  目前,深度学习(Deep Learning,简称DL)在算法领域可谓是大红大紫,现在不只是互联网、人工智能,生活中的各大领域都能反映出深度学习引领的巨大变革。要学习深度学习,那么首先要熟悉神经网络(Neural Networks,简称NN)的一些基本概念。当然,这里所说的神经网络不是生物学的神经网络,我们将其称之为人工神经网络(Artificial Neural Networks,简称ANN)貌似更为合理。神经网络最早是人工智能领域的一种算法或者说是模型,目前神经网络已经发展成为一类多学科交叉的学科领域,它也随着深度学习取得的进展重新受到重视和推崇。   为什么说是“重新”呢?其实,神经网络最为一种算法模型很早就已经开始研究了,但是在取得一些进展后,神经网络的研究陷入了一段很长时间的低潮期,后来随着Hinton在深度学习上取得的进展,神经网络又再次受到人们的重视。本文就以神经网络为主,着重总结一些相关的基础知识,然后在此基础上引出深度学习的概念,如有书写不当的地方,还请大家评批指正。 1. 神经元模型   神经元是神经网络中最基本的结构,也可以说是神经网络的基本单元,它的设计灵感完全来源于生物学上神经元的信息传播机制。我们学过生物的同学都知道,神经元有两种状态:兴奋和抑制。一般情况下,大多数的神经元是处于抑制状态,但是一旦某个神经元收到刺激,导致它的电位超过一个阈值

神经网络画图工具

雨燕双飞 提交于 2020-02-23 00:40:21
(1) NN-SVG: 能画常用的三种模型 github地址: https://github.com/zfrenchee 画图工具体验地址: http://alexlenail.me/NN-SVG/ 直接进去就可以画了 (2)ConvNetDraw 画图体验地址: https://cbovar.github.io/ConvNetDraw/ (3)visio 链接:https://pan.baidu.com/s/18DBZB5AKD-yh4T_J8Pe96w 提取码:iw5k viso比较常用的流程图绘制软件,也可以用来绘制神经网络 来源: CSDN 作者: nbxuwentao 链接: https://blog.csdn.net/nbxuwentao/article/details/104446408

神经网络基本概念

天涯浪子 提交于 2020-02-22 19:45:32
相关练习项目: 一个简单的神经网络 感知器 (perceptron) 即信号输入元, 单个的数据源, 比如人的眼睛,耳朵,鼻子,都是感知器 离散型和连续型预测 (discrete & continuous) 激活函数 (activation function) 使用连续激活函数,预测的结果不是非对即错,而是一个概率,表示预测结果的可靠,及确定性 SoftMax 多类别分类时使用 SoftMax 定义 def softmax(L): expL = np.exp(L) return expL/expL.sum() 分类问题的预测结果使用 softmax 作为激活函数,转化之后的结果加总为 100%,每个值代表一个预测结果可能发生的概率 One-hot Encoding 多类别分类时,分类目标数据一般表示为 [2,4,56,7,8,...] ,需要转换成类似 [[0,1,0,0,0,0,0], [0,0,0,1,0,0,0], [0,0,1,0,0,0,0], [0,0,0,0,1,0,0], ...] 这样的数据,计算机才能高效的处理. (不过使用PyTorch做分类问题时,不需要手动转化) 最大似然率(maximum likelihood) 最大似然率 所有预测结果(概率)的乘积, 用来衡量预测的结果的好坏,随着数据量变大,乘积无限接近0,不是一个好的衡量方式,所以不用. 交叉墒

卷积神经网络---CNN基础组件认识

ε祈祈猫儿з 提交于 2020-02-21 18:16:20
文章目录 卷积神经网络基础 二维卷积层 二维互相关运算 二维卷积层 互相关运算与卷积运算 特征图与感受野 填充和步幅 填充 步幅 多输入通道和多输出通道 多输入通道 多输出通道 1x1卷积层 卷积层与全连接层的对比 卷积层的简洁实现 池化 二维池化层 池化层的简洁实现 卷积神经网络基础 本节我们介绍卷积神经网络的基础概念,主要是卷积层和池化层,并解释填充、步幅、输入通道和输出通道的含义。 二维卷积层 本节介绍的是最常见的二维卷积层,常用于处理图像数据。 二维互相关运算 二维互相关(cross-correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称为卷积核或过滤器(filter)。卷积核的尺寸通常小于输入数组,卷积核在输入数组上滑动,在每个位置上,卷积核与该位置处的输入子数组按元素相乘并求和,得到输出数组中相应位置的元素。图1展示了一个互相关运算的例子,阴影部分分别是输入的第一个计算区域、核数组以及对应的输出。 图1 二维互相关运算 下面我们用 corr2d 函数实现二维互相关运算,它接受输入数组 X 与核数组 K ,并输出数组 Y 。 import torch import torch . nn as nn def corr2d ( X , K ) : H , W = X . shape h , w = K .

卷积神经网络的各种操作用途及意义

余生长醉 提交于 2020-02-21 17:44:50
【前馈神经网络】 前馈神经网络也叫做全连接网络。 缺点: 在图像识别中会将多维向量平铺成一维向量,会丢失像素点之间的距离关系。 无法将局部的权重应用到其他位置,带来的后果就是,如果在一个图像的右上角有一只猫,可以正确分类;当这只猫出现在左下角时,无法正确识别。( 没有 平移不变性 ) 【卷积神经网络】 卷积神经网络就是让权值在不同位置共享的神经网络。(卷积神经网络解决了前馈神经网络的什么问题?) 局部连接 空间共享 【局部连接】 如上图就是卷积运算,可以表示如下(两种不同的表达方式): 这是单通道、单卷积核下的计算方式。 每一次卷积运算,其实就是一次局部区域的线性组合,加上一个偏置后,得到下一层网络的一个神经元的输出。 【空间共享】 当卷积核扫到其他位置计算输出节点时, 比如y1,w1,w2,w3,w4 和b 0 是共用的 。 要注意这里的空间共享是指的在 高 和 宽 方向上的共享,在通道数上并不共享。 空间共享也就是卷积神经网络所引入的 先验知识 。 【输出表达】 在前面说,前馈神经网络时说到,如果将图片向量表示,就失去了平面结构信息,因此在输出时,卷积神经网络依然保留了矩阵的排列方式。如下图: 其实,经过一个卷积计算后得到一个神经元,比如上面蓝色的0,这个神经元叫做“Convolved Feature”或“Activation Map”或“Feature Map”

task05

帅比萌擦擦* 提交于 2020-02-20 03:17:14
LeNet: 在大的真实数据集上的表现并不尽如⼈意。 1.神经网络计算复杂。 2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域。 机器学习的特征提取:手工定义的特征提取函数 神经网络的特征提取:通过学习得到数据的多级表征,并逐级表⽰越来越抽象的概念或模式。 神经网络发展的限制:数据、硬件 AlexNet 首次证明了学习到的特征可以超越⼿⼯设计的特征,从而⼀举打破计算机视觉研究的前状。 特征: 8层变换,其中有5层卷积和2层全连接隐藏层,以及1个全连接输出层。 将sigmoid激活函数改成了更加简单的ReLU激活函数。 用Dropout来控制全连接层的模型复杂度。 引入数据增强,如翻转、裁剪和颜色变化,从而进一步扩大数据集来缓解过拟合。 来源: CSDN 作者: 一只小团子 链接: https://blog.csdn.net/powu0193/article/details/104401246

5.5 卷积神经网络(LeNet)

♀尐吖头ヾ 提交于 2020-02-20 03:10:19
在“多层感知机的从零开始实现”一节里我们构造了一个含单隐藏层的多层感知机模型来对Fashion-MNIST数据集中的图像进行分类。每张图像高和宽均是28像素。我们将图像中的像素逐行展开,得到长度为784的向量,并输入进全连接层中。然而,这种分类方法有一定的 局限性。 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。 对于大尺寸的输入图像,使用全连接层容易导致模型过大。假设输入是高和宽均为 1 , 000 1,000 1 , 0 0 0 像素的彩色照片(含3个通道)。即使全连接层输出个数仍是256,该层权重参数的形状也是 3 , 000 , 000 × 256 3,000,000\times 256 3 , 0 0 0 , 0 0 0 × 2 5 6 :它占用了大约3 GB的内存或显存。这会带来过于复杂的模型和过高的存储开销。 卷积层尝试解决这两个问题。 卷积层保留输入形状,使图像的像素在高和宽两个方向上的相关性均可能被有效识别; 卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。 卷积神经网络就是含卷积层的网络。本节里我们将介绍一个早期用来识别手写数字图像的卷积神经网络:LeNet。这个名字来源于LeNet(1994)论文的第一作者Yann LeCun