sem

VxWorks实时操作系统特点介绍

痴心易碎 提交于 2019-12-06 12:37:35
VxWorks 是美国 Wind River System 公司( 以下简称风河公司 ,即 WRS 公司)推出的一个实时操作系统。Tornado 是WRS 公司推出的一套实时操作系统开发环境,类似MicrosoftVisual C,但是提供了更丰富的调试、仿真环境和工具。 VxWorks的特点 1、VXWORKS既是一个操作系统、又是一个可以运行的最小基本程序 2、VXWORKS有BSP(可以认为是一种低层驱动),可以减小驱动程序的编写过程 3、VXWORKS具有强大的调试能力,可以在没有仿真器的情况下,通过串口调试。 4、VXWORKS具有软件DEBUG功能,可以对软件部分进行模拟调试。 5、VXWORKS具有丰富的函数库。 6、同时VXWORKS自带TCP/IP协议栈。 最大可能的减小开发者系统软硬件开发的难度,缩小开发周期,提高开发效率。 可以部分的保证软硬件开发的同步进行。 一个好的操作系统的几大特点: ● 多任务和可抢占的 ● 任务具有优先级 ● 操作系统具备支持可预测的任务同步机制 ● 支持多任务间的通信 ● 操作系统具备消除优先级转置的机制 ● 存储器优化管理 ● 操作系统的(中断延迟、任务切换、驱动程序延迟等)行为是可知的和可预测的。 ● 实时时钟服务 ● 中断管理服务 可靠性 操作系统的用户希望在一个工作稳定,可以信赖的环境中工作

linux中c多线程同步方法

我只是一个虾纸丫 提交于 2019-12-06 02:53:54
https://blog.csdn.net/jkx01whg/article/details/78119189 Linux下提供了多种方式来处理线程同步,最常用的是互斥锁、条件变量和信号量。 一、互斥锁(mutex)   锁机制是同一时刻只允许一个线程执行一个关键部分的代码。 1. 初始化锁   int pthread_mutex_init(pthread_mutex_t *mutex,const pthread_mutex_attr_t *mutexattr); 其中参数 mutexattr 用于指定锁的属性(见下),如果为NULL则使用缺省属性。 互斥锁的属性在创建锁的时候指定,在LinuxThreads实现中仅有一个锁类型属性,不同的锁类型在试图对一个已经被锁定的互斥锁加锁时表现不同。当前有四个值可供选择: (1)PTHREAD_MUTEX_TIMED_NP,这是缺省值,也就是普通锁。当一个线程加锁以后,其余请求锁的线程将形成一个等待队列,并在解锁后按优先级获得锁。这种锁策略保证了资源分配的公平性。 (2)PTHREAD_MUTEX_RECURSIVE_NP,嵌套锁,允许同一个线程对同一个锁成功获得多次,并通过多次unlock解锁。如果是不同线程请求,则在加锁线程解锁时重新竞争。 (3)PTHREAD_MUTEX_ERRORCHECK_NP,检错锁,如果同一个线程请求同一个锁

线程同步---信号量

会有一股神秘感。 提交于 2019-12-05 22:57:31
信号量:   多线程环境下使用的同步设施,相当于是互斥锁的升级版本。互斥锁类似一个二元的信号量,确保一个线程能够独占一块资源, 信号量则通过一个计数器来控制线程对于共享资源的访问,当计数器的值大于0的时候线程可以访问共享资源,并且使得计数器的值 减1,当计数值变为0时,所有试图通过信号量的线程均会阻塞,直到计数器的值大于0。   信号量的函数:   int sem_init(sem_t*sem,int pshared,unsigned int value),该函数用于初始化一个信号量,第二个参数为0表示该信号量为当前 进程的局部信号量,否则该信号量在多个进程之间共享。   int sem_destory(sem_t* sem),用于销毁一个信号量。   int sem_wait(sem_t* sem),以原子操作的方式将信号量的值减1,如果信号量的值为0,则该操作将被阻塞到信号量具有非0的值。   int sem_trywait(sem_t* sem),相当图try_wait的非阻塞版本,当信号为0时该函数为-1,并设置errno为-1.   sem_post(sem_t* sem),以原子操作的方式将信号量的值加1,阻塞与sem_wait()的线程将会被唤醒。    以上的所有函数执行成功的返回值均为0,失败的返回值为-1,并且设置errno。    来源: https:/

Drawing path diagrams with R package 'sem' using Graphviz

☆樱花仙子☆ 提交于 2019-12-05 04:40:07
问题 I use the sem package to do my analysis. To draw a path diagram I use the pathDiagram function in sem to get the code and then use it in Graphviz to get the diagram. I have two questions: library(sem) R.DHP <- readMoments(diag=FALSE, names=c('ROccAsp', 'REdAsp', 'FOccAsp', 'FEdAsp', 'RParAsp', 'RIQ', 'RSES', 'FSES', 'FIQ', 'FParAsp')) .6247 .3269 .3669 .4216 .3275 .6404 .2137 .2742 .1124 .0839 .4105 .4043 .2903 .2598 .1839 .3240 .4047 .3054 .2786 .0489 .2220 .2930 .2407 .4105 .3607 .0186

Linux 多线程编程(实现生产者消费者模型)

我是研究僧i 提交于 2019-12-04 01:47:08
Linux 多线程编程 线程分类 线程按照其调度者可以分为用户级线程和内核级线程两种。 内核级线程 在一个系统上实现线程模型的方式有好几种,因内核和用户空间提供的支持而有一定程度的级别差异。最简单的模型是在内核为线程提供了本地支持的情况,每个内核线程直接转换成用户空间的线程。这种模型称为“1:1线程模型(threading)”,因为内核提供的线程和用户的线程的数量是1:1。该模型也称为“内核级线程模型(kernel-level threading)”,因为内核是系统线程模型的核心。 Linux 中的线程就是“1:1线程模型”。在linux内核中只是简单地将线程实现成能够共享资源的进程。线程库通过系统调用 clone() 创建一个新的线程,返回的“进程”直接作为用户空间的线程。也就是说,在Linux上,用户调用线程和内核调用线程基本一致。 Linux的线程实现是在核外进行的,核内提供的是创建进程的接口do_fork()。内核提供了两个系统调用clone()和fork(),最终都用不同的参数调用do_fork()核内API。当然,要想实现线程,没有核心对多进程(其实是轻量级进程)共享数据段的支持是不行的,因此,do_fork()提供了很多参数,包括CLONE_VM(共享内存空间)、CLONE_FS(共享文件系统信息)、 CLONE_FILES(共享文件描述符表)、CLONE

信号量及一个简单的生产者消费者应用

你离开我真会死。 提交于 2019-12-03 04:39:54
信号量的使用是用来保护共享资源,使得资源在一个时刻只有一个进程(线程)所拥有。当信号量的值为正的时候,说明它空闲, 所测试的线程可以锁定而使用它。若为 0 , 说明它被占用,测试的线程要进入睡眠队列中,等待被唤醒。 信号量分为有名信号量和无名信号量。 有名信号量,其值保存在文件中,可以用来进程间的同步。无名信号量,其值保存在内存中,主要用来线程间同步。 有名信号量的创建: #include <semaphore.h> sem_t *sem_open(const char *name, int oflag, ... /* mode_t mode, unsigned int value */ ); 返回值:若成功则返回指向信号量的指针,若出错则返回SEM_FAILED 如果使用一个现存的有名信号量,我们只需指定两个参数:信号量名和oflag (oflag 取0 )。把oflag 设置为O_CREAT 标志时,如果指定的信号量不存在则新建一个有名信号量;如果指定的信号量已经存在,那么打开使用,无其他额外操作发生 如果我们想要确保我们在创建一个新的信号量,可以把oflag 参数设置为:O_CREAT|O_EXCL 。如果信号量已经存在的话,这会导致sem_open 调用失败。 无名信号量的创建: 信号量的函数都以sem_ 开头,线程中使用的基本信号函数有4 个

SemaphoreSlim.WaitAsync continuation code

匿名 (未验证) 提交于 2019-12-03 01:20:02
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 由 翻译 强力驱动 问题: My understanding of the await keyword was that the code following the await qualified statement is running as the continuation of that statement once it is complete. Hence the following two versions should produce the same output: public static Task Run ( SemaphoreSlim sem ) { TraceThreadCount (); return sem . WaitAsync (). ContinueWith ( t => { TraceThreadCount (); sem . Release (); }); } public static async Task RunAsync ( SemaphoreSlim sem ) { TraceThreadCount (); await sem . WaitAsync (); TraceThreadCount (); sem . Release ();

详解线程的信号量和互斥锁

匿名 (未验证) 提交于 2019-12-02 21:59:42
  前言: 有个问题感觉一直会被问道:进程和线程的区别?也许之前我会回答: 进程:资源分配最小单位 线程:轻量级的进程 是系统调度的最小单位 由进程创建 多个线程共享进程的资源   但是现在我觉得一个比喻回答的更好:程序就像静止的火车,进程是运行的火车,线程是运行火车的每节车厢。 个人感觉理解远比背些概念性东西更好。   一、线程   通常在一个进程中可以包含若干个线程,当然一个进程中至少有一个线程,不然没有存在的意义。线程可以利用进程所拥有的资源,在引入线程的操作系统中,通常都是把进程作为分配资源的基本单位,而把线程作为独立运行和独立调度的基本单位,由于线程比进程更小,基本上不拥有系统资源,故对它的调度所付出的开销就会小得多,能更高效的提高系统多个程序间并发执行的程度。   1、线程相关函数  pthread_create函数 #include <pthread.h> int pthread_create(pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine) (void *), void *arg); 注: Compile and link with -pthread.//编译时 要加-lpthread 功能:创建线程 参数1:线程的ID 参数2:NULL 参数3:线程处理函数 参数4:

Linux线程间同步的几种方式

匿名 (未验证) 提交于 2019-12-02 21:56:30
信号量强调的是线程(或进程)间的同步:“信号量用在多线程多任务同步的,一个线程完成了某一个动作就通过信号量告诉别的线程,别的线程再进行某些动作(大家都在sem_wait的时候,就阻塞在那里)。当信号量为单值信号量时,也可以完成一个资源的互斥访问。信号量测重于访问者对资源的有序访问,在大多数情况下,同步已经实现了互斥,特别是所有写入资源的情况必定是互斥的。少数情况是指可以允许多个访问者同时访问资源。 可以用于不同进程间或多线程间的互斥与同步 创建打开有名信号量 sem_t *sem_open(const char *name, int oflag); sem_t *sem_open(const char *name, int oflag, mode_t mode, unsigned int value); //成功返回信号量指针;失败返回SEM_FAILED,设置errno name是文件路径名,但不能写成/tmp/a.sem这样的形式,因为在linux下,sem都是在/dev/shm目录下,可写成"/mysem"或"mysem",创建出来的文件都是"/dev/shm/sem.mysem",mode设置为0666,value设置为信号量的初始值.所需信号灯等已存在条件下指定O_CREAT|O_EXCL却是个错误。 关闭信号量,进程终止时,会调用它 int sem_close(sem

【TencentOS tiny】深度源码分析(5)——信号量

余生长醉 提交于 2019-12-01 13:45:30
信号量 信号量( sem )在操作系统中是一种实现系统中任务与任务、任务与中断间同步或者临界资源互斥保护的机制。在多任务系统中,各任务之间常需要同步或互斥,信号量就可以为用户提供这方面的支持。 抽象来说,信号量是一个非负整数,每当信号量被获取( pend )时,该整数会减一,当该整数的值为 0 时,表示信号量处于无效状态,将无法被再次获取,所有试图获取它的任务将进入阻塞态。通常一个信号量是有计数值的,它的计数值可以用于系统资源计数(统计)。 一般来说信号量的值有两种: 0:表示没有积累下来的 post 信号量操作,且可能有任务阻塞在此信号量上。 正值:表示有一个或多个 post 信号量操作。 一般来说信号量多用于同步而非互斥,因为操作系统中会提供另一种互斥机制(互斥锁),互斥量的互斥作用更完善:互斥锁有优先级继承机制,而信号量则没有这个机制,此外互斥量还拥有所有者属性,我们会在后续讲解。 信号量也如队列一样,拥有 阻塞机制 。任务需要等待某个中断发生后,再去执行对应的处理,那么任务可以处于阻塞态等待信号量,直到中断发生后释放信号量后,该任务才被唤醒去执行对应的处理。在释放( post )信号量的时候能立即将等待的任务转变为就绪态,如果任务的优先级在就绪任务中是最高的,任务就能立即被运行,这就是操作系统中的“ 实时响应,实时处理 ”。在操作系统中使用信号量可以提高处理的效率。