scoring

CVPR2019 | 超越Mask R-CNN!华科开源图像实例分割新方法MS R-CNN

吃可爱长大的小学妹 提交于 2020-02-21 07:53:09
安妮 乾明 发自 凹非寺 本文转载自量子位(QbitAI) 实习生又立功了! 这一次,亮出好成绩的实习生来自地平线,是一名华中科技大学的硕士生。 他作为第一作者完成的研究Mask Scoring R-CNN,在 COCO图像实例分割任务上超越了何恺明的Mask R-CN N ,拿下了计算机视觉顶会CVPR 2019的口头报告。 也就是说,它从5000多篇投稿中脱颖而出,成为最顶尖的 5.6% 。 无论搭配的基干怎么变,表现一直稳定,总是比Mask R-CNN好一点。 可谓青出于蓝而胜于蓝。 并且,他们的算法已经开源了(传送门在文末)。 给蒙版打分 Mask R-CNN,一种简洁、灵活的实例分割框架,大神何恺明的“拿手作”之一。自2017年一出场就惊艳了四方研究者,何恺明也借此一举拿下ICCV 2017最佳论文奖。 △ 何恺明 新鲜出炉的Mask Scoring R-CNN,性能是怎样超越前辈的呢? 关键就在名字里的“打分”(Scoring)。这篇论文中,研究人员提出了一种 给算法的“实例分割假设”打分 的新方法。这个分数打得是否准确,就会影响实例分割模型的性能。 而Mask R-CNN等前辈,用的打分方法就不太合适。 这些模型在实例分割任务里,虽然输出结果是一个蒙版,但打分却是和边界框目标检测共享的,都是针对目标区域分类置信度算出来的分数。 这个分数,和图像分割蒙版的质量可未必一致

2019CVPR《Mask Scoring R-CNN》

余生长醉 提交于 2020-01-28 08:54:55
题目 :《Mask Scoring R-CNN》 CVPR 2019 Oral Paper (2017年783篇论文,获得口头报道的有215篇,oral paper很有含金量) 华中科技大学horizon.ai地平线计算机视觉技术研究中心 1.1 Abstract 让深度网络意识到自己的预测质量是一个有趣但重要的问题。在大多数实例分割的任务中,实例分类的置信度被当作mask的质量衡量指标。然而, mask的质量被量化为实例mask和它的ground truth之间的IOU,显然,mask的质量和分类的质量其实没有很强的相关性 。在这篇文章中,我们研究了这个问题(如何研究,带着这个问题去思考),并且提出了 Mask Scoring R-CNN , 其实包含一个网络块 network block去学习预测实例mask的质量 (这个网络块怎么设计的)。 这个网络模块利用实例特征和相应的预测的mask去回归mask IOU 。这个mask scoring策略可以解决的问题: mask score和mask quality不匹配的问题。 Mask Scoring R-CNN outperforms the state-of-art Mask R-CNN。 针对instance segmentation中的掩码质量不好提出解决。 network block去学习预测实例mask的质量

scikit learn 极限森林

丶灬走出姿态 提交于 2020-01-17 11:50:21
from sklearn . ensemble import ExtraTreesClassifier , RandomForestClassifier from sklearn . tree import DecisionTreeClassifier from sklearn . model_selection import cross_val_score from sklearn import datasets import numpy as np import matplotlib . pyplot as plt % matplotlib inline # 决策树,进行裂分时候,根据信息增益最大进行裂分,刻板 # 情深不寿,慧极必伤 # 极限森林 1、样本随机 2、分裂条件随机(不是最好的裂分条件) # 随机性在计算分割的方式上进一步向前迈进了一步。 # 像在随机森林中一样,使用候选特征的随机子集,但不是寻找最有区别的阈值, # 而是为每个候选特征随机绘制阈值, # 并选择这些随机生成的阈值中的最佳阈值作为划分规则 X , y = datasets . load_wine ( True ) clf = DecisionTreeClassifier ( ) cross_val_score ( clf , X , y , cv = 6 , scoring = 'accuracy'

Paging in Azure search when results have equal scores

你。 提交于 2020-01-14 13:51:50
问题 I'm using Azure Search on my e-commerce site, and now i faced the problem with paging on my search page. When i reload the search page i can get different order of products. So when i'm using paging i can see same products on different pages, and this is critical. I started researching what's going wrong, and i've found this info on Microsoft docs https://docs.microsoft.com/en-us/rest/api/searchservice/add-scoring-profiles-to-a-search-index#what-is-default-scoring Search score values can be

Scoring System In Cocos2D

时间秒杀一切 提交于 2020-01-11 14:29:10
问题 My game has a collision detection where when my missile hits the enemy the enemy disappears. I want to add a scoring system that adds 1 point every time my missile hits the enemy. I'll post my game code below (I used the HelloWorldLayer.m)** Here is the code: Link - http://pastebin.com/iGP83SCv In the collision section i just want it to add 1 point every time the projectile hits the enemy "sprout" and display the score in label. Example: Score:0000 PS, please explain it as easy as possible.

How to Score on a new Data Set

落爺英雄遲暮 提交于 2020-01-07 01:21:13
问题 We have built models in R for Clustering. We now want the equation of the model to be deployed for the new customers whom we want to Cluster. In SAS, the Cluster node used to provide a Clustering SAS code where we only had to to plug the new input variables. Is there a way to do that in R? How can we export the Cluster equation? An example of the same is as below using the standard iris dataset. irisnew <- iris library("cluster", lib.loc="~/R/win-library/3.2") (kc <- kmeans(irisnew, 3)) K

《YOLACT++ Better Real-time Instance Segmentation》论文笔记

你。 提交于 2020-01-06 22:03:23
代码地址: yolact 1. 概述 导读:这篇文章的方法YOLACT++是在YOLACT的基础上进行改进得到的(之前关于YOLACT的文章可以参考之前的博文: 链接 ),这篇文章给出的算法相比之前的版本其在instance分割性能上有了很大进步,作为取舍的另外一方面,在速度上略微有所下降。其具体的改进体现在以下3点:1)为网络引入Deformable Convolution,增强网络表达能力,带来更好的检测器与mask prototypes;2)针对目标设置更好的anchor尺寸和长宽比例;3)在网络中引入了快速mask re-scoring分支,这里的方法借鉴Mask Scoring RCNN,为mask引入质量评价;最后,其在COCO数据集上实例分割性能达到34.1mAP,帧率为33.5 FPS。 将文章的算法与之前的一些算法进行比较见下图所示: PS: 这里将不再阐述YOLACT的具体实现,主要阐述与YOLACT++不一样的地方,也就是文章提出的改进的地方。 2. 方法设计 2.1 Fast Mask Re-Scoring Network 这里从Mask Scoring RCNN受到启发,采用更加适合mask性能评估的方式去度量分割mask的质量,而不是采用分类的置信度,文章中使用与GT mask之间计算得到的mask IoU作为mask性能的评估指标,其对应的网络结构

What is _passthrough_scorer and How Can I Change Scorers in GridsearchCV (sklearn)?

为君一笑 提交于 2020-01-04 07:28:43
问题 http://scikit-learn.org/stable/modules/generated/sklearn.grid_search.GridSearchCV.html (for reference) x = [[2], [1], [3], [1] ... ] # about 1000 data grid = GridSearchCV(KernelDensity(), {'bandwidth': np.linspace(0.1, 1.0, 10)}, cv=10) grid.fit(x) When I use GridSearchCV without specifying scoring function like the , the value of grid.scorer_ is . Could you explain what kind of function _passthrough_scorer is? In addition to this, I want to change the scoring function to mean_squared_error

Scoring documents by both textual match and distance to a point

拈花ヽ惹草 提交于 2020-01-03 11:14:34
问题 I have an ElasticSearch index with a list of "shops". I'd like to allow customers to search these shops by both geo_distance (so, search for a point and get shops near that location), and textual match, like matches on shop name / address. I'd like to get results that match either of these two criteria, and I'd like the order of these results to be a combination of both. The stronger the textual match, and the closer to the point searched, the higher the result. (Obviously, there's going to

Lucene: exact matches aren't shown first

…衆ロ難τιáo~ 提交于 2020-01-03 05:49:07
问题 I am using the demo IndexFiles and SearchFiles classes to index and search which are in org.apache.lucene.demo packet. My issue is when I use a query that contains more than a word, I am not getting results that have the exact match. For instance: Enter query: "natural language" Searching for: "natural language" 298 total matching documents 1. download\researchers.uq.edu.au\fields-of-research\natural-language-processing .txt 2. download\researchers.uq.edu.au\research-project\16267.txt 3.