AUC(Area under Curve Roc曲线下面积)计算方法总结
3 月,跳不动了?>>> 转载至 http://blog.csdn.net/pzy20062141/article/details/48711355 一、roc曲线 1、roc曲线:接收者操作特征(receiveroperating characteristic),roc曲线上每个点反映着对同一信号刺激的感受性。 横轴 :负正类率(false postive rate FPR)特异度,划分实例中所有负例占所有负例的比例;(1-Specificity) 纵轴 :真正类率(true postive rate TPR)灵敏度,Sensitivity(正类覆盖率) 2针对一个二分类问题,将实例分成正类(postive)或者负类(negative)。但是实际中分类时,会出现四种情况. (1)若一个实例是正类并且被预测为正类,即为真正类(True Postive TP) (2)若一个实例是正类,但是被预测成为负类,即为假负类(False Negative FN) (3)若一个实例是负类,但是被预测成为正类,即为假正类(False Postive FP) (4)若一个实例是负类,但是被预测成为负类,即为真负类(True Negative TN) TP :正确的肯定数目 FN :漏报,没有找到正确匹配的数目 FP :误报,没有的匹配不正确 TN :正确拒绝的非匹配数目 列联表如下,1代表正类