caffe中参数设置的解析
lenet_solver.prototxt: net: "examples/mnist/lenet_train_test.prototxt" test_iter: 100 test_interval: 500 base_lr: 0.01 momentum: 0.9 type: SGD weight_decay: 0.0005 lr_policy: "inv" gamma: 0.0001 power: 0.75 display: 100 max_iter: 20000 snapshot: 5000 snapshot_prefix: "examples/mnist/lenet" solver_mode: CPU net :网络模型(训练网络模型、测试网络模型) test_iter :测试的批次数,这个参数要与batch_size结合起来理解,例如:mnist数据集中测试样本总数为10000,一次执行全部数据效率很低,因此,我们将测试数据分几个批次来执行。假定我们设置batch_size为100,则需要迭代100次才能将10000个数据全部执行完,因此,将test_iter设置为100。执行完一次全部数据,称之为一个epoch test_iterval :测试间隔,每训练500次进行一次测试 base_lr: 0.01 lr_policy: "inv" gamma: 0.0001