ransac

PCL Ransac 点云平面拟合 将三维不平整表面投影到一个平面 C++代码(没有用绘制平面的内部函数)

自古美人都是妖i 提交于 2019-12-22 20:45:11
参考链接(投影):https://blog.csdn.net/soaryy/article/details/82884691 参考链接(Ransac拟合):https://blog.csdn.net/weixin_41758695/article/details/85322304 利用开源的点云库PCL,使用VS2015完成的C++代码,测试文件(.obj)已经在本站(csdn)上传资源,供大家交流,如有问题欢迎多提宝贵意见 对于不平整表面,利用ransac平面拟合,然后将三维不平整表面(或者曲面)近似为一个平面,并将表面上的点投影到该平面,并且显示出来,如图所示,白色为原始点云,绿色为拟合的平面 依据公式: 代码如下 #define _CRT_SECURE_NO_WARNINGS #include <glut.h> #include <vtkAutoInit.h> VTK_MODULE_INIT(vtkRenderingOpenGL); VTK_MODULE_INIT(vtkInteractionStyle); #include <iostream> #include <string> #include <pcl/io/io.h> #include <pcl/io/pcd_io.h> #include <pcl/io/obj_io.h> #include <pcl

Robustly estimate Polynomial geometric transformation with scikit-image and RANSAC

六月ゝ 毕业季﹏ 提交于 2019-12-21 22:17:29
问题 I would like to robustly estimate a polynomial geometric transform with scikit-image skimage.transform and skimage.measure.ransac The ransack documentation gives a very nice example of how to do exactly that but with a Similarity Transform. Here is how it goes: from skimage.transform import SimilarityTransform from skimage.measure import ransac model, inliers = ransac((src, dst), SimilarityTransform, 2, 10) I need to use skimage.transform.PolynomialTransform instead of SimilarityTransform,

PCL采样一致性算法

此生再无相见时 提交于 2019-12-21 14:15:51
在计算机视觉领域广泛的使用各种不同的采样一致性参数估计算法用于排除错误的样本,样本不同对应的应用不同,例如剔除错误的配准点对,分割出处在模型上的点集,PCL中以随机采样一致性算法(RANSAC)为核心,同时实现了五种类似与随机采样一致形算法的随机参数估计算法,例如随机采样一致性算法(RANSAC)最大似然一致性算法(MLESAC),最小中值方差一致性算法(LMEDS)等,所有估计参数算法都符合一致性原则。在PCL中设计的采样一致性算法的应用主要就是对点云进行分割,根据设定的不同的几个模型,估计对应的几何参数模型的参数,在一定容许的范围内分割出在模型上的点云。 (1)RANSAC随机采样一致性算法的介绍 RANSAC是“RANdom SAmple Consensus(随机抽样一致)”的缩写。它可以从一组包含“局外点”的观测数据集中,通过迭代方式估计数学模型的参数。它是一种不确定的 算法 ——它有一定的概率得出一个合理的结果;为了提高概率必须提高迭代次数。 数 据分两种:有效数据(inliers)和无效数据(outliers)。偏差不大的数据称为有效数据,偏差大的数据是无效数据。如果有效数据占大多数,无 效数据只是少量时,我们可以通过最小二乘法或类似的方法来确定模型的参数和误差;如果无效数据很多(比如超过了50%的数据都是无效数据),最小二乘法就 失效了,我们需要新的算法

OpenCV C++ findHomography mask values meaning

▼魔方 西西 提交于 2019-12-18 12:38:06
问题 I am using the function findHomography of OpenCV with the RANSAC method in order to find the homography that relates two images linked with a set of keypoints. Main issue is that I haven’t been able to find anywhere yet what are the values of the mask matrix that the function outputs. Only information that I know is that 0 values are outliers, and non zero values are inliers. But what does it mean the inliers value? Anyone knows? Thanks in advance! Piece of code where I call findHomography :

difference between plane segmentation and plane fitting

Deadly 提交于 2019-12-12 03:34:51
问题 I've recently been working on a project in wich I'd have to detect walls, floor and ceiling in a 3D mesh. After doing some research I've been able to detect the floor and some part of the walls using RANSAC algorithms. I was just wondering if anybody could be able to explain the difference between plane-fitting and plane segmentation as they both seem to result into a point cloud containing the floor? 回答1: Plane fitting is generally understood as a pure least-squares based fitting technique

RANSAC plane fitting coefficients

↘锁芯ラ 提交于 2019-12-09 23:39:18
问题 I am trying to fit a plane to a set of point cloud. I tried using Point Cloud Library (PCL) & it works well. What I need to know is that how can I obtain the coefficients a,b,c of the fitted plane (ax+by+cz+1=0). Is there any straightforward way? I got some insights from here: 3D Least Squares Plane 回答1: See the following planar segmentation tutorial: http://pointclouds.org/documentation/tutorials/planar_segmentation.php Note in particular the use of the pcl::ModelCoefficients data structure.

PCL1.8.1 采样一致性算法 RANSAC

你离开我真会死。 提交于 2019-12-05 19:53:26
采样一致性算法主要是拟合点云中的平面、直线、圆等参数模型。 http://pointclouds.org/documentation/tutorials/random_sample_consensus.php#random-sample-consensus 平面拟合 将远离平面0.01米的点剔除掉 #include <pcl/sample_consensus/ransac.h> #include <pcl/sample_consensus/sac_model_plane.h> pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>); pcl::PointCloud<pcl::PointXYZ>::Ptr final(new pcl::PointCloud<pcl::PointXYZ>); //创建一个平面模型 pcl::SampleConsensusModelPlane<pcl::PointXYZ>::Ptr model_p(new pcl::SampleConsensusModelPlane<pcl::PointXYZ>(cloud)); //用于保存拟合后的点的索引 std::vector<int> inliers; //创建随机采样一致性算法 pcl:

Sample Consensus

生来就可爱ヽ(ⅴ<●) 提交于 2019-12-04 23:15:56
The following models are supported: SACMODEL_PLANE - used to determine plane models. The four coefficients of the plane are its Hessian Normal form : [ normal_x normal_y normal_z d ] SACMODEL_LINE - used to determine line models. The six coefficients of the line are given by a point on the line and the direction of the line as: [ point_on_line.x point_on_line.y point_on_line.z line_direction.x line_direction.y line_direction.z ] SACMODEL_CIRCLE2D - used to determine 2D circles in a plane. The circle's three coefficients are given by its center and radius as: [ center.x center.y radius ]

Robustly estimate Polynomial geometric transformation with scikit-image and RANSAC

心不动则不痛 提交于 2019-12-04 17:02:53
I would like to robustly estimate a polynomial geometric transform with scikit-image skimage.transform and skimage.measure.ransac The ransack documentation gives a very nice example of how to do exactly that but with a Similarity Transform. Here is how it goes: from skimage.transform import SimilarityTransform from skimage.measure import ransac model, inliers = ransac((src, dst), SimilarityTransform, 2, 10) I need to use skimage.transform.PolynomialTransform instead of SimilarityTransform, and I need to be able to specify the polynomial order. But the RANSAC call takes as input the

RANSAC拟合算法

纵然是瞬间 提交于 2019-12-04 08:53:16
最小二乘法只适合与误差较小的情况。试想一下这种情况,假使需要从一个噪音较大的数据集中提取模型(比方说只有20%的数据时符合模型的)时,最小二乘法就显得力不从心了。 算法简介 随机抽样一致算法(RANdom SAmple Consensus,RANSAC)。它是一种迭代的方法,用来在一组包含离群的被观测数据中估算出数学模型的参数。 RANSAC是一个非确定性算法,在某种意义上说,它会产生一个在一定概率下合理的结果,其允许使用更多次的迭代来使其概率增加。此RANSAC算法在1981年由Fischler和Bolles首次提出。 RANSAC的基本假设是 “内群”数据可以通过几组模型参数来叙述其数据分布,而“离群”数据则是不适合模型化的数据。 数据会受噪声影响,噪声指的是离群,例如从极端的噪声或错误解释有关数据的测量或不正确的假设。 RANSAC假定,给定一组(通常很小)的内群,存在一个程序,这个程序可以估算最佳解释或最适用于这一数据模型的参数。 一、范例 这里用一个简单的例子来说明,在一组数据点中找到一条最适合的线。 假设,此有一组集合包含了内群以及离群,其中内群为可以被拟合到线段上的点,而离群则是无法被拟合的点。 如果我们用简单的最小平方法来找此线,我们将无法得到一条适合于内群的线,因为最小平方法会受离群影响而影响其结果。 而RANSAC,可以只由内群来计算出模型,而且概率还够高。