频谱泄漏和拖尾现象
吉布斯现象 (英语:Gibbs phenomenon),由 Henry Wilbraham 于1848年最先提出 [1] ,并由 约西亚·吉布斯 于1899年证明 [2] 。在工程应用时常用有限正弦项 正弦波 叠加逼近原周期信号。所用的谐波次数N的大小决定逼近原波形的程度,N增加,逼近的精度不断改善。但是由于对于具有不连续点的周期信号会发生一种现象:当选取的 傅里叶级数 的项数N增加时,合成的波形虽然更逼近原函数,但在不连续点附近会出现一个固定高度的过冲,N越大,过冲的最大值越靠近不连续点,但其峰值并不下降,而是大约等于原函数在不连续点处跳变值的9%,且在不连续点两侧呈现衰减振荡的形式 图像 维基百科 在做信号处理时,经常涉及到“泄漏”。那泄漏是什么,是什么原因造成了泄漏呢?在这将告诉您答案。 1. 信号截断 一次FFT分析截取1帧长度的时域信号,这1帧的长度总是有限的,因为FFT分析一次只能分析有限长度的时域信号。而实际采集的时域信号总时间很长,因此,需要将采样时间很长的时域信号截断成一帧一帧长度的数据块。这个截取过程叫做 信号截断 。 假设有一段10s的时域信号,取1帧的长度 T =1s,无重叠,则该信号将被截断为10帧,如下图所示。按此规律进行FFT计算,将得到10个瞬时频谱,如果将这些瞬时频谱进行平均,那么平均次数为10次,最终的FFT分析结果为这10个瞬时频谱的平均结果。