线性判别分析(Linear Discriminant Analysis)(一)
1. 问题 之前我们讨论的PCA、ICA也好,对样本数据来言,可以是没有类别标签y的。回想我们做回归时,如果特征太多,那么会产生不相关特征引入、过度拟合等问题。我们可以使用PCA来降维,但PCA没有将类别标签考虑进去,属于无监督的。 比如回到上次提出的文档中含有“learn”和“study”的问题,使用PCA后,也许可以将这两个特征合并为一个,降了维度。但假设我们的类别标签y是判断这篇文章的topic是不是有关学习方面的。那么这两个特征对y几乎没什么影响,完全可以去除。 再举一个例子,假设我们对一张100*100像素的图片做人脸识别,每个像素是一个特征,那么会有10000个特征,而对应的类别标签y仅仅是0/1值,1代表是人脸。这么多特征不仅训练复杂,而且不必要特征对结果会带来不可预知的影响,但我们想得到降维后的一些最佳特征(与y关系最密切的),怎么办呢? 2. 线性判别分析(二类情况) 回顾我们之前的logistic回归方法,给定m个n维特征的训练样例 (i从1到m),每个 对应一个类标签 。我们就是要学习出参数 ,使得 (g是sigmoid函数)。 现在只考虑二值分类情况,也就是y=1或者y=0。 为了方便表示,我们先换符号重新定义问题,给定特征为d维的N个样例, ,其中有 个样例属于类别 ,另外 个样例属于类别 。 现在我们觉得原始特征数太多,想将d维特征降到 只有一维