业界首个视频识别与定位工具集PaddleVideo重磅更新 | 飞桨PaddlePaddle升级解读
本文作者:杨蕊1002 导读:飞桨(PaddlePaddle)致力于让深度学习技术的创新与应用更简单。7月初,随着Paddle Fluid 1.5版本的发布,国内业界首个视频识别与定位工具集PaddleVideo也迎来了重磅更新。PaddleVideo在实际工业界可以形成很多具体应用,包括:视频精彩片段预测、关键镜头定位、视频剪辑等任务,例如定位NBA篮球赛视频中扣篮镜头,电视剧中的武打镜头等。如下图所示: 本文末尾,为广大算法和开发同学准备了PaddleVideo模型实战的应用案例,视频剪辑、素材拼接和标题生成工作完全是程序模型自动完成的,极大地减轻了人力剪辑的工作量,效果也还不错。不过,在看具体模型具体应用之前,让我们可以先来了解一下PaddleVideo。 1. PaddleVideo是什么? PaddleVideo是飞桨在计算机视觉领域为用户提供的模型库PaddleCV中的视频识别与定位部分的模型库。PaddleVideo的全部模型都是开源的,用户可以一键式快速配置模型完成训练和评测。 PaddleVideo目前视频分类和动作定位模型包括: 2. 重磅更新内容详解 本次重磅更新要点如下: 增加动作定位模型C-TCN,该模型是2018年ActivityNet夺冠方案。 增加已发布的模型骨干网络,Non-local模型增加ResNet101和l3d网络结构