机器人逆动力学(Robot Inverse Dynamics)
(作者建议您在 这里 下载本文pdf版获得更清晰的阅读方式)。 逆动力学问题是指:已知某一时刻机器人各关节的位置 ,关节速度 及关节加速度 ,求此时施加在机器人各杆件上的驱动力(力矩) 。 逆动力学问题在机器人控制与计算机动画领域都有广泛的应用。例如当给出期望的机器人运动状态时,我们可以通过逆动力学解算来分析其力矩是否可以由作动系统实现。在计算机动画领域,可以利用优化算法求解力矩消耗最小的动画过程(如文献[1])来得到一个自然的动画。另外,逆动力学也常作为正动力学的一个子部分来求解正动力学(正动力学指已知力和力矩,求系统状态)。 逆动力学可以利用牛顿欧拉(Newton-Euler)方程来求解,也可以利用拉格朗日(Lagrange)方程来求解(二者的等价性与区别读者可以参看文献[2]中的2.3节)。本文旨在讲解如何基于牛顿欧拉(Newton-Euler)方程来求解机器人逆动力学,其算法被称为“迭代牛顿欧拉算法(Recursive Newton-Euler Algorithm)”。 1. 预备知识 在介绍“迭代牛顿欧拉算法(Recursive Newton-Euler Algorithm)”之前,让我们先看一下什么是牛顿欧拉方程: 其中 表示线加速度, 表示角加速度(角速度的导数),等式左边的求和符号表示公式中应该使用合力与合力矩。关于如何得出牛顿欧拉方程,请参看我的前一篇文章: