Spark-SQL 面试准备 2
Spark Knowledge NO.2 11.RDD缓存: Spark可以使用 persist 和 cache 方法将任意 RDD 缓存到内存、磁盘文件系统中。缓存是容错的,如果一个 RDD 分片丢失,可以通过构建它的 transformation自动重构。被缓存的 RDD 被使用的时,存取速度会被大大加速。一般的executor内存60%做 cache, 剩下的40%做task。 Spark中,RDD类可以使用cache() 和 persist() 方法来缓存。cache()是persist()的特例,将该RDD缓存到内存中。而persist可以指定一个StorageLevel。StorageLevel的列表可以在StorageLevel 伴生单例对象中找到。 Spark的不同StorageLevel ,目的满足内存使用和CPU效率权衡上的不同需求。我们建议通过以下的步骤来进行选择: 如果你的RDDs可以很好的与默认的存储级别(MEMORY_ONLY)契合,就不需要做任何修改了。这已经是CPU使用效率最高的选项,它使得RDDs的操作尽可能的快。 如果不行,试着使用MEMORY_ONLY_SER并且选择一个快速序列化的库使得对象在有比较高的空间使用率的情况下,依然可以较快被访问。 尽可能不要存储到硬盘上,除非计算数据集的函数,计算量特别大,或者它们过滤了大量的数据。否则