最大最小距离 和 层次聚类 算法的一个共同特点是某个模式一旦划分到某一类之后,在后续的算法过程中就不再改变了,而 简单聚类算法中类心一旦选定后,在后继算法过程中也不再改变了。因此,这些方法效果一般不会太理想。 为解决该问题,可以采用 动态聚类法: 使用动态聚类法的要点: 确定模式和聚类的距离测度。当采用欧式距离时,是计算此模式和该类中心的欧式距离;为能反映出类的模式分布结构,可采用马氏距离。 确定评估聚类质量的准则函数。 确定模式划分以及聚类合并或分裂的规则。 基本步骤: 建立初始聚类中心,进行初始聚类 计算模式和类的距离,调整模式的类别 计算各聚类的参数,删除、合并或分裂一些聚类 从初始聚类开始,运用迭代算法动态地改变模式的类别和聚类的中心使准则函数取得极值或设定的参数达到设计要求时停止 C-均值法 条件及约定 设待分类的模式特征矢量集为:{ \(\vec x_1, \vec x_2,...,\vec x_N\) },类的数目C是事先取定的。 算法思想 该方法取定C个类别和选取C个初始聚类中心,按最小距离原则将各模式分配到C类中的某一类,之后不断地计算类心和调整各模式的类别,最终使各模式到其判属类别中心的距离平方和最小。 算法原理步骤 (1) 任选C个模式特征矢量作为初始聚类中心: \(\vec z_1^{(0)}, \vec z_2^{(0)},...,\vec z_C^{(0