Machine Learning系列--CRF条件随机场总结
根据《统计学习方法》一书中的描述,条件随机场(conditional random field, CRF)是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机变量构成马尔科夫随机场。 条件随机场是一种判别式模型。 一、理解条件随机场 1.1 HMM简单介绍 HMM即 隐马尔可夫模型 ,它是处理序列问题的统计学模型,描述的过程为:由隐马尔科夫链随机生成 不可观测的状态随机序列 ,然后各个状态分别生成一个观测,从而产生观测随机序列。 在这个过程中,不可观测的序列称为状态序列(state sequence), 由此产生的序列称为观测序列(observation sequence)。 该过程可通过下图描述: 上图中, $X_1,X_2,…X_T$是隐含序列,而$O_1, O_2,..O_T$是观察序列。 隐马尔可夫模型由三个概率确定: 初始概率分布 ,即初始的隐含状态的概率分布,记为$\pi$; 状态转移概率分布 ,即隐含状态间的转移概率分布, 记为$A$; 观测概率分布 ,即由隐含状态生成观测状态的概率分布, 记为$B$。 以上的三个概率分布可以说就是隐马尔可夫模型的参数,而根据这三个概率,能够确定一个隐马尔可夫模型$\lambda = (A, B, \pi)$。 而隐马尔科夫链的三个基本问题为: 概率计算问题 。即给定模型$\lambda = (A,