机器学习小白学习笔记---day3---线性模型(岭回归、lasso、线性模型【svm、logistic回归】)
机器学习小白学习笔记之scikit-learn 最近刚把西瓜书啃完,一大堆理论让脑子真的是一团浆糊,说实话看的基本只有一个概念哈哈哈,效果不高,但是让我对与机器学习真的是整体有了一个大的了解,但是并没能将每个课后作业都完成,甚至很多公式推导也没实现,太难了,让我着手于实践,古人云实践出真知,又拿起了另一本书《Introduce to Mashine Learning with python》 昨天上一节,学习完了knn分类回归,这一节继续往下学,自然而然地学到线性模型,线性模型在实际运用中还是相当广泛的。 用于回归的线性模型: 单一特征的预测结果是一条直线,双特征是一个平面,而高维度的则是一个超平面。 我们继续来看最常见的线性回归模型: 线性回归(普通最小二乘法) 线性回归寻找最佳的参数w(斜率、权重、系数),和b(截距),使得对训练集的预测值与真hide回归目标值y之间的均方误差最小。 在高位数据集中,线性模型将体现的更加强大,但同时会产生过拟合风险,根据书本,通过波士顿房价数据集进行预测。 我们会发现一个情况: 测试集的分数远远低于训练集的分数,显而易见就是产生了过拟合,所以我们应该找到一个可以控制复杂度的模型,标准线性回归最常用的替代方法之一就是 岭回归 。 岭回归 其实预测方法和最小二乘法相同,但是做了一下正则化(附带上拟合约束,希望系数尽可能小