lfe

关乎城市的文化情怀倘佯

核能气质少年 提交于 2020-05-03 19:02:14
sdfsdf 服务网格作为一个改善服务到服务通信的专用基础设施层,是云原生范畴中最热门的话题。随着容器愈加流行,服务拓扑也频繁变动,这就需要更好的网络性能。服务网格能够通过服务发现、路由、负载均衡、心跳检测和支持可观测性,帮助我们管理网络流量。服务网格试图为无规则的复杂的容器问题提供规范化的解决方案 将供应链搬出中国,似乎成了过去两三个月新冠肺炎疫情衍生出的热门话题。 年初新冠肺炎疫情爆发,让中国供应链的生产活动几乎完全停顿,影响席卷全球:苹果的新 5G 有可能因疫情而延期推出,特斯拉新款芯片无法及时交付、陷入“芯片门”纠纷。其余像三星、小米、索尼等著名跨国企业,均受到供应链停摆的影响。 因此,qadwnnz.answers.yahoo.com/question/index?qid=20200427231500AA8MQoR?AB3=11tco=98z answers.yahoo.com/question/index?qid=20200427231513AAspfzw?VY7=19eyb=33p in.answers.yahoo.com/question/index?qid=20200427231513AAspfzw?JW7=45jqr=24p malaysia.answers.yahoo.com/question/index?qid=20200427231513AAspfzw

Clustered standard errors different in plm vs lfe

北慕城南 提交于 2019-12-31 22:26:51
问题 When I run a cluster standard error panel specification with plm and lfe I get results that differ at the second significant figure. Does anyone know why they differ in their calculation of the SE's? set.seed(572015) library(lfe) library(plm) library(lmtest) # clustering example x <- c(sapply(sample(1:20), rep, times = 1000)) + rnorm(20*1000, sd = 1) y <- 5 + 10*x + rnorm(20*1000, sd = 10) + c(sapply(rnorm(20, sd = 10), rep, times = 1000)) facX <- factor(sapply(1:20, rep, times = 1000))

predict method for felm from lfe package

南笙酒味 提交于 2019-12-18 18:46:06
问题 Does anyone have a nice clean way to get predict behavior for felm models? library(lfe) model1 <- lm(data = iris, Sepal.Length ~ Sepal.Width + Species) predict(model1, newdata = data.frame(Sepal.Width = 3, Species = "virginica")) # Works model2 <- felm(data = iris, Sepal.Length ~ Sepal.Width | Species) predict(model2, newdata = data.frame(Sepal.Width = 3, Species = "virginica")) # Does not work 回答1: As a workaround, you could combine felm , getfe , and demeanlist as follows: library(lfe) lm

Predict using felm output with standard errors

我与影子孤独终老i 提交于 2019-12-18 12:28:44
问题 Is there way to get predict behavior with standard errors from lfe::felm if the fixed effects are swept out using the projection method in felm ? This question is very similar to the question here, but none of the answers to that question can be used to estimate standard errors or confidence/prediction intervals. I know that there's currently no predict.felm , but I am wondering if there are workarounds similar to those linked above that might also work for estimating the prediction interval

How do I install LFE on Ubuntu Karmic?

隐身守侯 提交于 2019-12-06 04:28:08
问题 Erlang was already installed: $dpkg -l|grep erlang ii erlang 1:13.b.3-dfsg-2ubuntu2 Concurrent, real-time, distributed function ii erlang-appmon 1:13.b.3-dfsg-2ubuntu2 Erlang/OTP application monitor ii erlang-asn1 1:13.b.3-dfsg-2ubuntu2 Erlang/OTP modules for ASN.1 support ii erlang-base 1:13.b.3-dfsg-2ubuntu2 Erlang/OTP virtual machine and base applica ii erlang-common-test 1:13.b.3-dfsg-2ubuntu2 Erlang/OTP application for automated testin ii erlang-debugger 1:13.b.3-dfsg-2ubuntu2 Erlang/OTP

How do I install LFE on Ubuntu Karmic?

好久不见. 提交于 2019-12-04 07:12:58
Erlang was already installed: $dpkg -l|grep erlang ii erlang 1:13.b.3-dfsg-2ubuntu2 Concurrent, real-time, distributed function ii erlang-appmon 1:13.b.3-dfsg-2ubuntu2 Erlang/OTP application monitor ii erlang-asn1 1:13.b.3-dfsg-2ubuntu2 Erlang/OTP modules for ASN.1 support ii erlang-base 1:13.b.3-dfsg-2ubuntu2 Erlang/OTP virtual machine and base applica ii erlang-common-test 1:13.b.3-dfsg-2ubuntu2 Erlang/OTP application for automated testin ii erlang-debugger 1:13.b.3-dfsg-2ubuntu2 Erlang/OTP application for debugging and te ii erlang-dev 1:13.b.3-dfsg-2ubuntu2 Erlang/OTP development libraries

Clustered standard errors different in plm vs lfe

纵饮孤独 提交于 2019-12-03 03:09:06
When I run a cluster standard error panel specification with plm and lfe I get results that differ at the second significant figure. Does anyone know why they differ in their calculation of the SE's? set.seed(572015) library(lfe) library(plm) library(lmtest) # clustering example x <- c(sapply(sample(1:20), rep, times = 1000)) + rnorm(20*1000, sd = 1) y <- 5 + 10*x + rnorm(20*1000, sd = 10) + c(sapply(rnorm(20, sd = 10), rep, times = 1000)) facX <- factor(sapply(1:20, rep, times = 1000)) mydata <- data.frame(y=y,x=x,facX=facX, state=rep(1:1000, 20)) model <- plm(y ~ x, data = mydata, index = c(

predict method for felm from lfe package

无人久伴 提交于 2019-11-30 17:10:11
Does anyone have a nice clean way to get predict behavior for felm models? library(lfe) model1 <- lm(data = iris, Sepal.Length ~ Sepal.Width + Species) predict(model1, newdata = data.frame(Sepal.Width = 3, Species = "virginica")) # Works model2 <- felm(data = iris, Sepal.Length ~ Sepal.Width | Species) predict(model2, newdata = data.frame(Sepal.Width = 3, Species = "virginica")) # Does not work As a workaround, you could combine felm , getfe , and demeanlist as follows: library(lfe) lm.model <- lm(data=demeanlist(iris[, 1:2], list(iris$Species)), Sepal.Length ~ Sepal.Width) fe <- getfe(felm

Predict using felm output with standard errors

一个人想着一个人 提交于 2019-11-30 07:16:32
Is there way to get predict behavior with standard errors from lfe::felm if the fixed effects are swept out using the projection method in felm ? This question is very similar to the question here , but none of the answers to that question can be used to estimate standard errors or confidence/prediction intervals. I know that there's currently no predict.felm , but I am wondering if there are workarounds similar to those linked above that might also work for estimating the prediction interval library(DAAG) library(lfe) model1 <- lm(data = cps1, re74 ~ age + nodeg + marr) predict(model1,