TensorFlow实战第八课(卷积神经网络CNN)
首先我们来简单的了解一下什么是卷积神经网路(Convolutional Neural Network) 卷积神经网络是近些年逐步兴起的一种人工神经网络结构, 因为利用卷积神经网络在图像和语音识别方面能够给出更优预测结果, 这一种技术也被广泛的传播可应用. 卷积神经网络最常被应用的方面是计 算机的图像识别, 不过因为不断地创新, 它也被应用在视频分析, 自然语言处理, 药物发现, 等等. 卷积也就是说神经网络不再是对每个像素的输入信息做处理了,而是图片上的每一个小块像素区域进行处理,这种做法加强了图片信息的连续性。是的神经网络能够看到图形,而非一个点。这种做法 同时也加深了神经网络对图片的理解 具体来说,卷积神经网络有一个批量过滤器,持续不断的在图片上进行滚动手机图片里的信息,每一次手机的时候都只是收集一小块像素区域 然后把收集来的信息进行整理, 这时候整理出来的信息有了 一些实际上的呈现, 比如这时的神经网络能看到一些边缘的图片信息, 然后在以同样的步骤, 用类似的批量过滤器扫过产生的这些边缘信息, 神经网络从这些边缘信息里面总结出更高层的信息结构。 卷积过程 下面是一张猫咪的图片,图片有长宽高三个参数(高度是指计算机用于产生颜色使用的信息。例如黑白颜色的话图片高度为1,彩色的话RGB,高度为3)。过滤器就是影响中不断移动的东西,他不断在图片收集小批小批的像素块,收集完所有信息后