kepler

为什么Map.get(Object key)不是(完全)泛型的原因是什么

前提是你 提交于 2020-02-25 17:26:49
决定在 java.util.Map<K, V> 接口中没有完全通用的get方法的背后原因是什么? 为了澄清问题,该方法的签名是 V get(Object key) 代替 V get(K key) 我想知道为什么(与 remove, containsKey, containsValue )。 #1楼 这是 Postel法则 的一种应用 , “对您的工作要保守,对别人接受的东西要宽松”。 不论类型如何,都可以执行相等性检查。 equals 方法在 Object 类上定义,并接受任何 Object 作为参数。 因此,对于密钥等效性以及基于密钥等效性的操作来说,接受任何 Object 类型都是有意义的。 映射返回键值时,通过使用type参数,它可以保存尽可能多的类型信息。 #2楼 还有一个重要的原因,因为它破坏了Map,因此在技术上无法完成。 Java具有像 <? extends SomeClass> <? extends SomeClass> 。 标记为此类引用可以指向使用 <AnySubclassOfSomeClass> 签名的类型。 但是多态泛型使该引用 变为只读 。 编译器仅允许您将泛型类型用作方法的返回类型(如简单的getter),但会阻止使用泛型为参数的方法(如普通的setter)。 这意味着您是否编写 Map<? extends KeyType, ValueType> Map

Are GPU Kepler CC3.0 processors not only pipelined architecture, but also superscalar? [closed]

ぐ巨炮叔叔 提交于 2020-01-01 12:07:08
问题 Closed. This question is off-topic. It is not currently accepting answers. Want to improve this question? Update the question so it's on-topic for Stack Overflow. Closed 4 years ago . In the documentation for CUDA 6.5 has written: http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#ixzz3PIXMTktb 5.2.3. Multiprocessor Level ... 8L for devices of compute capability 3.x since a multiprocessor issues a pair of instructions per warp over one clock cycle for four warps at a time, as

*Modified* Nvidia Maxwell, increased global memory instruction count

二次信任 提交于 2019-12-19 04:56:45
问题 I had an experiment on both GTX760(Kepler) and GTX750Ti(Maxwell) using benchmarks(Parboil, Rodinia). Then I analyzed results using Nvidia visual profiler. In most of the applications, the number of global instructions are enormously increased up to 7-10 times on Maxwell architecture. spec. for both graphic cards GTX760 6.0Gbps 2048MB 256bit 192.2 GB/s GTX750Ti 5.4Gbps 2048MB 128bit 86.4Gb/s Ubuntu 14.04 CUDA driver 340.29 toolkit 6.5 I compiled the benchmark application(No modification) then

“Global Load Efficiency” over 100%

荒凉一梦 提交于 2019-12-13 15:22:22
问题 I have a CUDA program in which threads of a block read elements of a long array in several iterations and memory accesses are almost fully coalesced. When I profile, Global Load Efficiency is over 100% (between 119% and 187% depending on the input). Description for Global Load Efficiency is " Ratio of global memory load throughput to required global memory load throughput. " Does it mean that I'm hitting L2 cache a lot and my memory accesses are benefiting from it? My GPU is GeForce GTX 780

Kepler RCP CoolBar + PerspectiveBar appearance

隐身守侯 提交于 2019-12-12 01:45:12
问题 The coolbars on all Kepler RCP applications look just terrible. This a project created from scratch on Windows 8. What is it with that thick black line sorrounding the coolbar? Can it be style-hacked with CSS? From my testing, it seems that it appears only when the perspective bar is present. 回答1: I think the CSS for this is the eclipse-perspective-keyline-color in the #PerspectiveSwitcher selector. 回答2: You can try to add this dependencies in your product file: org.eclipse.e4.ui.css.core ,

The efficiency and performance of ILP for the NVIDIA Kepler architecture

一笑奈何 提交于 2019-12-10 12:23:40
问题 Quoting the "Kepler Tuning Guide" provided by NVIDIA: Also note that Kepler GPUs can utilize ILP in place of thread/warp-level parallelism (TLP) more readily than Fermi GPUs can. In my opinion, the following code snippet a = .....; a2 = f(a); a3 = g(a2); can be improved as follows a = ...; b = ....; a2 = f(a); b2 = f(b); a3 = g(a2); b3 = g(b2); So in my projects, I have a section of code as follows (example 1) if(x < src.cols && y < src.rows) { if(!mask(y,x)) { src.ptr(y)[x] = make_short4(0,0

Are GPU Kepler CC3.0 processors not only pipelined architecture, but also superscalar? [closed]

ぃ、小莉子 提交于 2019-12-04 09:56:23
In the documentation for CUDA 6.5 has written: http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#ixzz3PIXMTktb 5.2.3. Multiprocessor Level ... 8L for devices of compute capability 3.x since a multiprocessor issues a pair of instructions per warp over one clock cycle for four warps at a time, as mentioned in Compute Capability 3.x. Does this mean that the GPU Kepler CC3.0 processors are not only pipelined architecture, but also superscalar? Pipelining - these two sequences execute in parallel (different operations at one time): LOAD [addr1] -> ADD -> STORE [addr1] -> NOP NOP ->

说好不哭!数据可视化深度干货,前端开发下一个涨薪点在这里~

天大地大妈咪最大 提交于 2019-12-03 13:18:10
随着互联网在各行各业的影响不断深入,数据规模越来越大,各企业也越来越重视数据的价值。作为一家专业的数据智能公司,个推从消息推送服务起家,经过多年的持续耕耘,积累沉淀了海量数据,在数据可视化领域也开展了深入的探索和实践。 个推的数据可视化探索和应用由需求出发,从基于开源平台到结合个性化需求进行定制化开发,打造出个推实时消息推送下发图,人群分布热力图等优秀数据可视化作品。这一过程中,个推积累沉淀了大量的数据可视化组件,打磨了自己的数据可视化技术能力。其中,个推热力图正应用在智慧城市、人口空间规划、公共服务等领域,为其提供强大的数据支撑。 个推消息下发图 个推打造的湖滨商圈区域人口热力图 本文就和大家分享一下个推的数据可视化实践、遇到的问题及解决思路,希望大家能从中有所受益。 一、数据可视化的构成 数据可视化由四类可视化元素构成:背景信息、标尺、坐标系、视觉暗示。 1.1 背景信息 背景信息就是标题、度量单位、注释等附加类的信息。主要是为了帮助大屏受众更好地理解相关背景信息,即5W信息:何人(who)、何事(what)、何时(when)、何地(where)、为何(why)。 1.2 标尺 标尺主要用来衡量不同方向和维度上的数据大小,常用的有数字标尺、分类标尺、时间标尺等,类似我们熟悉的刻度。 1.3 坐标系 坐标系有一个结构化的空间,还有指定图形和颜色画在哪里的规则,用于编码数据的时候

个推数据可视化之人群热力图、消息下发图前端开发实践

和自甴很熟 提交于 2019-12-03 13:17:54
随着互联网在各行各业的影响不断深入,数据规模越来越大,各企业也越来越重视数据的价值。作为一家专业的数据智能公司,个推从消息推送服务起家,经过多年的持续耕耘,积累沉淀了海量数据,在数据可视化领域也开展了深入的探索和实践。 个推的数据可视化探索和应用由需求出发,从基于开源平台到结合个性化需求进行定制化开发,打造出个推实时消息推送下发图,人群分布热力图等优秀数据可视化作品。这一过程中,个推积累沉淀了大量的数据可视化组件,打磨了自己的数据可视化技术能力。其中,个推热力图正应用在智慧城市、人口空间规划、公共服务等领域,为其提供强大的数据支撑。 个推消息下发图 个推打造的湖滨商圈区域人口热力图 本文就和大家分享一下个推的数据可视化实践、遇到的问题及解决思路,希望大家能从中有所受益。 一、数据可视化的构成 数据可视化由四类可视化元素构成:背景信息、标尺、坐标系、视觉暗示。 1.1 背景信息 背景信息就是标题、度量单位、注释等附加类的信息。主要是为了帮助大屏受众更好地理解相关背景信息,即5W信息:何人(who)、何事(what)、何时(when)、何地(where)、为何(why)。 1.2 标尺 标尺主要用来衡量不同方向和维度上的数据大小,常用的有数字标尺、分类标尺、时间标尺等,类似我们熟悉的刻度。 1.3 坐标系 坐标系有一个结构化的空间,还有指定图形和颜色画在哪里的规则,用于编码数据的时候

Concurrent, unique kernels on the same multiprocessor?

我的梦境 提交于 2019-12-02 07:49:03
问题 Is it possible, using streams, to have multiple unique kernels on the same streaming multiprocessor in Kepler 3.5 GPUs? I.e. run 30 kernels of size <<<1,1024>>> at the same time on a Kepler GPU with 15 SMs? 回答1: On a compute capability 3.5 device, it might be possible. Those devices support up to 32 concurrent kernels per GPU and 2048 threads peer multi-processor. With 64k registers per multi-processor, two blocks of 1024 threads could run concurrently if their register footprint was less