吴恩达-coursera-机器学习-week2
四、多变量线性回归(Linear Regression with Multiple Variables) 4.1 多维特征 4.2 多变量梯度下降 4.3 梯度下降法实践1-特征缩放 4.4 梯度下降法实践2-学习率 4.5 特征和多项式回归 4.6 正规方程 4.7 正规方程及不可逆性(可选) 五、Octave教程(Octave Tutorial) 5.1 基本操作 5.2 移动数据 5.3 计算数据 5.4 绘图数据 5.5 控制语句:for,while,if语句 5.6 向量化 5.7 工作和提交的编程练习 第2周 四、多变量线性回归(Linear Regression with Multiple Variables) 4.1 多维特征 参考视频: 4 - 1 - Multiple Features (8 min).mkv 目前为止,我们探讨了单变量/特征的回归模型,现在我们对房价模型增加更多的特征,例如房间数楼层等,构成一个含有多个变量的模型,模型中的特征为 \(\left( {x_{1}},{x_{1}},...,{x_{n}} \right)\) 。 增添更多特征后,我们引入一系列新的注释: \(n\) 代表特征的数量 \({x^{\left( i \right)}}\) 代表第 \(i\) 个训练实例,是特征矩阵中的第i行,是一个向量(vector)。 比方说,上图的