【概率论与数理统计】小结6 - 大数定理与中心极限定理
注 :这两个定理可以说是概率论中最重要的两个定理。也是由于中心极限定理的存在,使得正态分布从其他众多分布中脱颖而出,成为应用最为广泛的分布。这两个定理在概率论的历史上非常重要,因此对于它们的研究也横跨了几个世纪(始于18世纪初),众多耳熟能详的大数学家都对这两个定理有自己的贡献。因此,这两个定理都不是单一的定理。不同的大数定理和中心极限定理从不同的方面对相同的问题进行了阐述,它们条件各不相同,得到的结论的强弱程度也不一样。 1. 大数定理(law of large numbers,LLN) 图1-1,伯努利(1655-1705) 大数定律可以说是整个数理统计学的一块基石,最早的大数定律由伯努利在他的著作《推测术》中提出并给出了证明。这本书出版于伯努利去世后的1713年。数理统计学中包含两类重要的问题——对概率p的检验与估计。大数定律的本质是一类极限定理,它是由概率的统计定义“频率收敛于概率”引申而来的。简单来说就是n个独立同分布的随机变量的观察值的均值$\bar{X}$依概率收敛于这些随机变量所属分布的理论均值,也就是总体均值。 举一个古典概率模型的例子:拿一个盒子,里面装有大小、质地一样的球a+b个,其中白球a个,黑球b个。这时随机地从盒子中抽出一球(意指各球有同等可能被抽出),则“抽出的球为白球”这一事件A的概率p=a/(a+b).但是如果不知道a、b的比值,则p也不知道