基于点云方式的6D姿态识别
作者:Tom Hardy Date:2020-2-26 来源: 基于点云方式的6D姿态识别 前言 除了对应点方式,还可以将点云将与整个形状对齐,获得6D姿态。通常,首先进行粗配准以提供初始对准,然后进行密集配准方法,如迭代最近点(ICP),以获得最终的6D姿态。针对点云方式,挑选了一些相关的paper,在这里做下基本思想分享。 1、Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration 迭代最近点(ICP)算法是目前应用最广泛的点集配准方法之一。然而,基于局部迭代优化的ICP算法易受局部极小值的影响。它的性能严重依赖于初始化的质量,并且只保证局部最优性。本文提出了在ICP定义的L2误差度量下,两个三维点集欧氏(刚性)配准的第一个全局最优算法Go-ICP。Go-ICP方法基于搜索整个3D运动空间SE(3)的分枝定界(BnB)方案。利用SE(3)几何的特殊结构,推导了新的配准误差函数的上下界。在BnB方案中引入局部ICP,在保证全局最优的同时加快了新方法的速度。本文还讨论了扩展,解决了异常值健壮性问题。实验结果表明,该方法能够在不考虑初始值的情况下产生可靠的配准结果。Go-ICP可应用于需要最佳解决方案或无法始终获得良好初始化的情况。 2、SUPER 4PCS Fast Global Pointcloud