GLM model: h2o.predict gives very different results depending on number of rows used in the validation data
问题 I built a H2O (v. 3.14) GLM model. However, when I check the predictions using h2o.predict, I got very different results based on how many rows I use in the validation set. Calling h2o.predict on the first 10 rows, I got: # Predict using the first 10 lines in validation set h2o.predict(glm.test, df.valid[1:10,]) # Result: predict p0 p1 1 0 0.9999224 7.756014e-05 2 0 0.9962711 3.728930e-03 3 0 0.9997378 2.622195e-04 4 0 0.9999556 4.437544e-05 5 0 0.9998994 1.006037e-04 6 0 0.9999394 6.062479e