Understanding Gaussian Mixture Models
可以将文章内容翻译成中文,广告屏蔽插件可能会导致该功能失效(如失效,请关闭广告屏蔽插件后再试): 问题: I am trying to understand the results from the scikit-learn gaussian mixture model implementation. Take a look at the following example: #!/opt/local/bin/python import numpy as np import matplotlib.pyplot as plt from sklearn.mixture import GaussianMixture # Define simple gaussian def gauss_function(x, amp, x0, sigma): return amp * np.exp(-(x - x0) ** 2. / (2. * sigma ** 2.)) # Generate sample from three gaussian distributions samples = np.random.normal(-0.5, 0.2, 2000) samples = np.append(samples, np.random.normal(-0.1, 0.07, 5000)) samples