高斯求和

多元高斯分布

戏子无情 提交于 2019-11-28 08:39:38
让我们回到小球检测的栗子,在一元高斯分布下,我们只使用了色相值这一个性质。然而,颜色其实是用多个维度来定义的。比如,在HSV模型下,除了色相值还有饱和度(Saturation)和亮度(Value)。而我们通常使用的三原色光模式(RGB模型)将颜色表示成红色(R)、绿色(G)和蓝色(B)的叠加。如果我们用RGB值来表示一个颜色,怎样表示我们栗子中的小球呢?我们将图片中所有像素点的RGB值用散点图的形式画出来可以得到下面的图: 那我们怎样对这种图形进行建模呢?如这一节的题目所说,我们将一元高斯分布扩展到多元高斯分布并对RGB值进行建模。 让我们首先来介绍多元高斯分布的数学形式吧: 多元高斯分布和一元高斯分布是十分相似的,我们用加粗的 来表示变量(一个向量), 表示维度(元的数目),加粗的 表示平均向量,大写的 表示协方差矩阵(Covariance Matrix,是一个方阵), 表示 的行列式值, 表示矩阵 的转置。 值得一提的是协方差矩阵,它由两部分组成,方差(Variance)和相关性(Correlation),对角线上的值表示方差,非对角线上的值表示维度之间的相关性。拿一个二维协方差矩阵作栗子: 其中,对角线上的 和 分别表示变量 和 的独立方差,非对角线上的 表示两个变量之间的相关性(注意 和 是相等的)。 回到小球检测的栗子,我们考虑用RGB来对“红色