高斯函数

卷积核与特征提取

試著忘記壹切 提交于 2020-03-11 19:55:34
原文地址: https://www.cnblogs.com/zongfa/p/9130167.html 线性滤波与卷积的基本概念 线性滤波可以说是图像处理最基本的方法,它可以允许我们对图像进行处理,产生很多不同的效果。做法很简单。首先,我们有一个二维的滤波器矩阵(有个高大上的名字叫卷积核)和一个要处理的二维图像。然后,对于图像的每一个像素点,计算它的邻域像素和滤波器矩阵的对应元素的乘积,然后加起来,作为该像素位置的值。这样就完成了滤波过程。 对图像和滤波矩阵进行逐个元素相乘再求和的操作就相当于将一个二维的函数移动到另一个二维函数的所有位置,这个操作就叫卷积或者协相关。卷积和协相关的差别是,卷积需要先对滤波矩阵进行180的翻转,但如果矩阵是对称的,那么两者就没有什么差别了。 Correlation 和 Convolution可以说是图像处理最基本的操作,但却非常有用。这两个操作有两个非常关键的特点:它们是线性的,而且具有平移不变性shift-invariant。平移不变性指我们在图像的每个位置都执行相同的操作。线性指这个操作是线性的,也就是我们用每个像素的邻域的线性组合来代替这个像素。这两个属性使得这个操作非常简单,因为线性操作是最简单的,然后在所有地方都做同样的操作就更简单了。 实际上,在信号处理领域,卷积有广泛的意义,而且有其严格的数学定义,但在这里不关注这个。

图像处理基础(4):高斯滤波器详解

痞子三分冷 提交于 2020-02-01 17:11:32
本文主要介绍了高斯滤波器的原理及其实现过程 高斯滤波器是一种线性滤波器,能够有效的抑制噪声,平滑图像。其作用原理和均值滤波器类似,都是取滤波器窗口内的像素的均值作为输出。其窗口模板的系数和均值滤波器不同,均值滤波器的模板系数都是相同的为1;而高斯滤波器的模板系数,则随着距离模板中心的增大而系数减小。所以,高斯滤波器相比于均值滤波器对图像个模糊程度较小。 什么是高斯滤波器 既然名称为高斯滤波器,那么其和高斯分布(正态分布)是有一定的关系的。一个二维的高斯函数如下: \[ h(x,y) = e ^ {- \frac{x^2 + y^2}{2\sigma ^ 2}} \] 其中 \((x,y)\) 为点坐标,在图像处理中可认为是整数; \(\sigma\) 是标准差。要想得到一个高斯滤波器的模板,可以对高斯函数进行离散化,得到的高斯函数值作为模板的系数。例如:要产生一个 \(3 \times 3\) 的高斯滤波器模板,以模板的中心位置为坐标原点进行取样。模板在各个位置的坐标,如下所示(x轴水平向右,y轴竖直向下) 这样,将各个位置的坐标带入到高斯函数中,得到的值就是模板的系数。 对于窗口模板的大小为 \((2k + 1) \times (2k + 1)\) ,模板中各个元素值的计算公式如下: \[ H_{i,j} = \frac{1}{2\pi \sigma ^ 2}e ^{-\frac

图像处理___高斯滤波与高斯噪声

大憨熊 提交于 2019-12-26 09:02:42
噪声 1.噪声表现形式 噪声在图像上常表现为一引起较强视觉效果的孤立像素点或像素块。一般,噪声信号与要研究的对象不相关,它以无用的信息形式出现,扰乱图像的可观测信息。通俗的说就是噪声让图像不清楚。 2.噪声对数字图像的影响 对于数字图像信号,噪声表为或大或小的极值,这些极值通过加减作用于图像像素的真实灰度值上,对图像造成亮、暗点干扰,极大降低了图像质量,影响图像复原、分割、特征提取、图像识别等后继工作的进行。 3.高斯噪声 噪声可以看作随机信号,具有统计学上的特征属性。功率谱密度(功率的频谱分布PDF)即是噪声的特征之一,通过功率谱密度分类噪声。 高斯噪声是指它的概率密度函数服从高斯分布(即正态分布)的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。 高斯白噪声的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。 概率密度函数PDF:    其中z表示灰度值,μ表示z的平均值或期望值,σ表示z的标准差。标准差的平方σ2称为z的方差。 产生原因:1)图像传感器在拍摄时市场不够明亮、亮度不够均匀;      2)电路各元器件自身噪声和相互影响;     3)图像传感器长期工作,温度过高 4.表现形式 5.图像 高斯滤波器 1.定义 高斯滤波器是一种线性滤波器,能够有效的抑制噪声,平滑图像。其作用原理和均值滤波器类似

图像滤波之高斯滤波介绍

孤街浪徒 提交于 2019-12-26 09:02:30
1 高斯滤波简介   了解高斯滤波之前,我们首先熟悉一下高斯噪声。高斯噪声是指它的 概率密度函数 服从 高斯分布 (即 正态分布 )的一类噪声。如果一个噪声,它的幅度分布服从高斯分布,而它的 功率谱密度 又是均匀分布的,则称它为高斯白噪声。高斯白噪声的二阶矩不相关,一阶矩为 常数 ,是指先后信号在时间上的相关性, 高斯白噪声 包括 热噪声 和 散粒噪声 。   高斯滤波器是一类根据高斯函数的形状来选择权值的线性平滑滤波器。高斯平滑滤波器对于抑制服从正态分布的噪声非常有效。一维零均值高斯函数为:                          g(x)=exp( -x^2/(2 sigma^2)   其中,高斯分布参数Sigma决定了高斯函数的宽度。对于图像处理来说,常用二维零均值离散高斯函数作平滑滤波器,高斯函数的图形:                    2 高斯滤波函数   对于图像来说,高斯滤波器是利用高斯核的一个2维的卷积算子,用于图像模糊化(去除细节和噪声)。   1) 高斯分布   一维高斯分布:          二维高斯分布:      2) 高斯核   理论上,高斯分布在所有定义域上都有非负值,这就需要一个无限大的卷积核。实际上,仅需要取均值周围3倍标准差内的值,以外部份直接去掉即可。 如下图为一个标准差为1.0的整数值高斯核。                

高斯滤波

ぃ、小莉子 提交于 2019-12-26 09:02:08
1.通俗讲,对整幅图像进行加权平均的过程。 2.十分有效的低通滤波器。 3.两种实现:1.离散化窗口滑窗卷积;2.傅里叶变换。 4.高斯函数:    (e:自然对数,≈2.71828) 5.高斯函数积分:    6.高斯分布:    7.高斯滤波性质(5个):    ( 1 )二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向.   ( 2 )高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真.   ( 3 )高斯函数的傅立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染 ( 噪声和细纹理 ) .而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号.   ( 4 )高斯滤波器宽度 ( 决定着平滑程度 ) 是由参数σ表征的

深度学习暑期学校(加拿大、蒙特利尔,2016.8.1-7)

半世苍凉 提交于 2019-12-08 00:21:00
learning to see.pdf @lutingting 2016-11-04 16:15 字数 10899 阅读 4087 SIFT特征提取及匹配 数字图像处理 图像特征提取 SIFT特征提取及匹配 1.SIFT(Scale-invariant feature transform)算子的核心思想 2.什么是尺度空间呢? 2.1 一篇百度文库的文章关于尺度空间的分析 例子1 例子2 现实生活中的例子 2.2 SIFT中的尺度空间的概念 3.SIFT特征提取 3.1 尺度空间极值检测 3.1.1 尺度空间的建立(高斯金字塔的建立) 3.1.2 图像差分高斯金字塔(DoG)的建立 3.1.3 尺度空间中特征点的检测(DoG中极值点的检测) 3.2 关键点位置及尺度确定 3.3 关键点方向确定 3.4 特征向量生成 4.SIFT特征的匹配 5.下面是一些参考程序 5.1 5.2 1.SIFT(Scale-invariant feature transform)算子的核心思想 利用不同尺度的高斯核函数对图像进行平滑,即构造图像的尺度空间 比较不同尺度平滑后的图像差别,在某局部范围内,差别最大或者差别最小的像素点就是特征明显的点 由于SIFT特征的检测方式,使得它具有: 尺度不变性:在尺度空间内进行的特征点检测 2.什么是尺度空间呢? 2.1 一篇百度文库的文章关于尺度空间的分析

高斯滤波

柔情痞子 提交于 2019-12-07 16:08:31
第一个问题:高斯函数为什么能作为图像处理中的滤波函数? 高斯平滑滤波器无论在空间域还是在频率域都是十分有效的低通滤波器,且在实际图像处理中得到了工程人员的有效使用.高斯函数具有五个十分重要的性质,它们是: (1)二维高斯函数具有旋转对称性,即滤波器在各个方向上的平滑程度是相同的.一般来说,一幅图像的边缘方向是事先不知道的,因此,在滤波前是无法确定一个方向上比另一方向上需要更多的平滑.旋转对称性意味着高斯平滑滤波器在后续边缘检测中不会偏向任一方向. (2)高斯函数是单值函数.这表明,高斯滤波器用像素邻域的加权均值来代替该点的像素值,而每一邻域像素点权值是随该点与中心点的距离单调增减的.这一性质是很重要的,因为边缘是一种图像局部特征,如果平滑运算对离算子中心很远的像素点仍然有很大作用,则平滑运算会使图像失真. (3)高斯函数的付立叶变换频谱是单瓣的.正如下面所示,这一性质是高斯函数付立叶变换等于高斯函数本身这一事实的直接推论.图像常被不希望的高频信号所污染(噪声和细纹理).而所希望的图像特征(如边缘),既含有低频分量,又含有高频分量.高斯函数付立叶变换的单瓣意味着平滑图像不会被不需要的高频信号所污染,同时保留了大部分所需信号. (4)高斯滤波器宽度(决定着平滑程度)是由参数σ表征的,而且σ和平滑程度的关系是非常简单的.σ越大,高斯滤波器的频带就越宽,平滑程度就越好

高斯模糊原理,算法

落爺英雄遲暮 提交于 2019-12-04 01:05:11
作者:Hohohong 链接:https://www.jianshu.com/p/8d2d93c4229b 來源:简书 图像卷积滤波与高斯模糊 1.1 图像卷积滤波 对于滤波来说,它可以说是图像处理最基本的方法,可以产生很多不同的效果。以下图来说 图中矩阵分别为二维原图像素矩阵,二维的图像滤波矩阵(也叫做卷积核,下面讲到滤波器和卷积核都是同个概念),以及最后滤波后的新像素图。对于原图像的每一个像素点,计算它的领域像素和滤波器矩阵的对应元素的成绩,然后加起来,作为当前中心像素位置的值,这样就完成了滤波的过程了。 可以看到,一个原图像通过一定的卷积核处理后就可以变换为另一个图像了。而对于滤波器来说,也是有一定的规则要求的。 ① 滤波器的大小应该是奇数,这样它才有一个中心,例如3x3,5x5或者7x7。有中心了,也有了半径的称呼,例如5x5大小的核的半径就是2。 ② 滤波器矩阵所有的元素之和应该要等于1,这是为了保证滤波前后图像的亮度保持不变。当然了,这不是硬性要求了。 ③ 如果滤波器矩阵所有元素之和大于1,那么滤波后的图像就会比原图像更亮,反之,如果小于1,那么得到的图像就会变暗。如果和为0,图像不会变黑,但也会非常暗。 ④ 对于滤波后的结构,可能会出现负数或者大于255的数值。对这种情况,我们将他们直接截断到0和255之间即可。对于负数,也可以取绝对值。 1.2 卷积核一些用法

SIFT

匿名 (未验证) 提交于 2019-12-03 00:37:01
1. 图像尺度空间 在了解图像特征匹配前,需要清楚,两张照片之所以能匹配得上,是因为其特征点的相似度较高。 “ 图像尺度空间 ”。 “看”一张照片时,会从不同的“尺度”去观测照片,尺度越大,图像越模糊。 “ 尺度 ”就是二维高斯函数当中的σ值 ,一张照片与二维高斯函数卷积后得到很多张不同σ值的高斯图像,这就好比你用人眼从不同距离去观测那张照片。所有不同尺度下的图像,构成单个原始图像的 尺度空间 “ 图像尺度空间表达 ”就是图像在所有尺度下的描述。 尺度是自然客观存在的,不是主观创造的。 高斯卷积只是表现尺度空间的一种形式 。 2. ――高斯卷积 高斯核是唯一可以产生多尺度空间的核。在低通滤波中,高斯平滑滤波无论是时域还是频域都十分有效。我们都知道,高斯函数具有五个重要性质: (1)二维高斯具有旋转对称性; (2)高斯函数是 ; (3)高斯函数的 ; (4) ( ) (5)二维高斯滤波的计算量随滤波模板宽度成 。 L(x,y,σ) , I(x,y) 2 G(x,y,σ) 表达式 “尺度空间表达”,它们有什么关系呢? “尺度空间表达”指的是不同高斯核所平滑后的图片的不同表达 “看”上去的样子就不一样了。高斯核越大,图片“看”上去就越模糊。 那么,图片的模糊与找特征点有关系吗? 计算机没有主观意识去识别哪里是特征点, 它能做的,只是 分辨出变化率最快的点 RGB 0~255 ――降采样

高斯模糊

匿名 (未验证) 提交于 2019-12-02 23:34:01
要想实现高斯模糊的特点,则需要通过构建对应的权重矩阵来进行滤波。 1.3.1 正态分布 正态分布 正态分布中,越接近中心点,取值越大,越远离中心,取值越小。 计算平均值的时候,我们只需要将"中心点"作为原点,其他点按照其在正态曲线上的位置,分配权重,就可以得到一个加权平均值。正态分布显然是一种可取的权重分配模式。 1.3.2 高斯函数 如何反映出正态分布?则需要使用高函数来实现。 上面的正态分布是一维的,而对于图像都是二维的,所以我们需要二维的正态分布。 正态分布的密度函数叫做"高斯函数"(Gaussian function)。它的一维形式是: 其中,μ是x的均值,σ是x的方差。因为计算平均值的时候,中心点就是原点,所以μ等于0。 根据一维高斯函数,可以推导得到二维高斯函数: 有了这个函数 ,就可以计算每个点的权重了。 1.3.3 获取权重矩阵 假定中心点的坐标是(0,0),那么距离它最近的8个点的坐标如下: 更远的点以此类推。 为了计算权重矩阵,需要设定σ的值。假定σ=1.5,则模糊半径为1的权重矩阵如下: 这9个点的权重总和等于0.4787147,如果只计算这9个点的加权平均,还必须让它们的权重之和等于1,因此上面9个值还要分别除以0.4787147,得到最终的权重矩阵。 除以总值这个过程也叫做”归一问题“ 目的是让滤镜的权重总值等于1。否则的话