概率论

概率论——伯努利和二项随机变量

£可爱£侵袭症+ 提交于 2020-01-29 04:12:40
文章目录 1 伯努利随机变量 2 二项随机变量 3 二项随机变量的性质 4 二项随机变量的分布函数 1 伯努利随机变量   对于一个试验,我们将其结果分为两类,成功或失败,当试验结果为成功时 X = 1 X=1 X = 1 ,试验结果失为败时 X = 0 X=0 X = 0 。这样,随机变量 X X X 的概率质量函数为: p ( 0 ) = P { X = 0 } = 1 − p p ( 1 ) = P { X = 1 } = p p(0) = P\{X=0\}=1-p \\ p(1) = P\{X=1\}=p p ( 0 ) = P { X = 0 } = 1 − p p ( 1 ) = P { X = 1 } = p 其中 0 ≤ p ≤ 1 0\le p \le 1 0 ≤ p ≤ 1 是每次试验成功的概率。如果随机变量的概率质量函数为上式的形式,那么就称 X X X 为 伯努利随机变量 。 2 二项随机变量   现在对于上述试验,假设进行 n n n 次 独立的 重复试验,每次试验成功的概率为 p p p ,失败的概率为 1 − p 1-p 1 − p 。现在我们令随机变量 X X X 表示 n n n 次试验中成功的次数,那么此时就称 X X X 为参数是 ( n , p ) (n,p) ( n , p ) 的二项随机变量 ,因此伯努利随机变量也是参数为 ( 1 , p

Batch Normalization 批量标准化

喜欢而已 提交于 2020-01-26 10:12:10
本篇博文转自:https://www.cnblogs.com/guoyaohua/p/8724433.html  Batch Normalization作为最近一年来DL的重要成果,已经广泛被证明其有效性和重要性。虽然有些细节处理还解释不清其理论原因,但是实践证明好用才是真的好,别忘了DL从Hinton对深层网络做Pre-Train开始就是一个 经验领先于理论分析 的偏经验的一门学问。本文是对论文《Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift》的导读。   机器学习领域有个很重要的假设: IID独立同分布假设 ,就是假设训练数据和测试数据是满足相同分布的,这是通过训练数据获得的模型能够在测试集获得好的效果的一个基本保障。那BatchNorm的作用是什么呢? BatchNorm就是在深度神经网络训练过程中使得每一层神经网络的输入保持相同分布的。   接下来一步一步的理解什么是BN。   为什么深度神经网络 随着网络深度加深,训练起来越困难,收敛越来越慢? 这是个在DL领域很接近本质的好问题。很多论文都是解决这个问题的,比如ReLU激活函数,再比如Residual Network,BN本质上也是解释并从某个不同的角度来解决这个问题的。 一、

应该要知道的几个统计学定义.

谁说我不能喝 提交于 2020-01-24 23:43:37
//我们先来看一下几个名词基本解释. 1.标准差(Standard deviation) 简单来说,标准差是一组数值自平均值分散程度的一种测量观念.一个较大的标准差,代表大部分的数值和其平均值之间差异较大,一个较小的标准差,代表这些数值较接近平均值. 公式: 例如: 两组数的集合 {0, 5, 9, 14} 和 {5, 6, 8, 9} 其平均值都是7,但第二个集合具有较小的标准差. 标准差可以当作不确定性的一种测量.例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度.当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色.如果测量平均值与预测值相差太远(同时与标准差数值做比较) 则认为测量值与预测值互相矛盾.这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确. 标准差应用于投资上,可作为量度回报稳定性的指标.标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高.相反,标准差数值越小,代表回报较为稳定,风险亦较小. 例如: A,B两组各有6位学生参加同一次语文测验,A组的分数为95,85,75,65,55,45  B组的分数为73,72,71,69,68,67.这两组的平均数都是70,但A组的标准差为17.078分,B组的标准差为2.160分,说明A组学生之间的差距要比B组学生之间的差距大得多. 2.方差.

【概率论与数理统计】小结6 - 大数定理与中心极限定理

可紊 提交于 2020-01-24 23:42:44
注 :这两个定理可以说是概率论中最重要的两个定理。也是由于中心极限定理的存在,使得正态分布从其他众多分布中脱颖而出,成为应用最为广泛的分布。这两个定理在概率论的历史上非常重要,因此对于它们的研究也横跨了几个世纪(始于18世纪初),众多耳熟能详的大数学家都对这两个定理有自己的贡献。因此,这两个定理都不是单一的定理。不同的大数定理和中心极限定理从不同的方面对相同的问题进行了阐述,它们条件各不相同,得到的结论的强弱程度也不一样。 1. 大数定理(law of large numbers,LLN) 图1-1,伯努利(1655-1705) 大数定律可以说是整个数理统计学的一块基石,最早的大数定律由伯努利在他的著作《推测术》中提出并给出了证明。这本书出版于伯努利去世后的1713年。数理统计学中包含两类重要的问题——对概率p的检验与估计。大数定律的本质是一类极限定理,它是由概率的统计定义“频率收敛于概率”引申而来的。简单来说就是n个独立同分布的随机变量的观察值的均值$\bar{X}$依概率收敛于这些随机变量所属分布的理论均值,也就是总体均值。 举一个古典概率模型的例子:拿一个盒子,里面装有大小、质地一样的球a+b个,其中白球a个,黑球b个。这时随机地从盒子中抽出一球(意指各球有同等可能被抽出),则“抽出的球为白球”这一事件A的概率p=a/(a+b).但是如果不知道a、b的比值,则p也不知道

机器学习task06_朴素贝叶斯

旧街凉风 提交于 2020-01-21 12:30:32
贝叶斯决策论(Bayesian decision theory) 是概率框架下实施决策的基本方法。对分类任务来说,在所有相关概率都已知的理想情形下,贝叶斯决策论考虑如何基于这些概率和误判损失来选择最优的类别标记。 具体来说,若我们决策的目标是最小化分类错误率,贝叶斯最优分类器要对每个样本 x,选择能使后验概率 P( c | x )最大的类别 c 标记。在现实任务中后验概率通常难以直接获得。从这个角度来说,机器学习所要实现的是基于有限的训练样本集尽可能准确地估计出后验概率 P( c | x )。大体来说,主要有两种策略:给定x,可通过直接建模P( c | x )来预测c,这样得到的是“判别式模型”,例如,决策树、BP神经网络、支持向量机等等;也可先对联合概率分布P( x,c )建模,然后在由此获得P( c | x ),这样得到的是“生成式模型” 朴素贝叶斯分类器 基于贝叶斯公式来估计后验概率P( c | x )的主要困难在于:类条件概率P( x | c )是所有属性上的联合概率,难以从有限的训练样本直接估计而得。因此朴素贝叶斯分类器采用了“属性条件独立性假设”:对已知类别,假设所有属性相互独立。也就是说,假设每个属性独立的对分类结果发生影响。 sklearn接口 from sklearn.naive_bayes import GaussianNB from sklearn

机器学期之贝叶斯分类器

空扰寡人 提交于 2020-01-20 20:49:02
1.相关概念 生成模型 :在概率统计理论中, 生成模型是指能够随机生成观测数据的模型,尤其是在给定某些隐含参数的条件下。它给观测值和标注数据序列指定一个联合概率分布。在机器学习中,生成模型可以用来直接对数据建模(例如根据某个变量的概率密度函数进行数据采样),也可以用来建立变量间的条件概率分布。条件概率分布可以由生成模型根据贝叶斯定理形成。常见的基于生成模型算法有高斯混合模型和其他混合模型、隐马尔可夫模型、随机上下文无关文法、朴素贝叶斯分类器、AODE分类器、潜在狄利克雷分配模型、受限玻尔兹曼机 举例 :要确定一个瓜是好瓜还是坏瓜,用判别模型的方法是从历史数据中学习到模型,然后通过提取这个瓜的特征来预测出这只瓜是好瓜的概率,是坏瓜的概率。 判别模型: 在机器学习领域判别模型是一种对未知数据 y 与已知数据 x 之间关系进行建模的方法。判别模型是一种基于概率理论的方法。已知输入变量 x ,判别模型通过构建条件概率分布 P(y|x) 预测 y 。常见的基于判别模型算法有逻辑回归、线性回归、支持向量机、提升方法、条件随机场、人工神经网络、随机森林、感知器 举例 :利用生成模型是根据好瓜的特征首先学习出一个好瓜的模型,然后根据坏瓜的特征学习得到一个坏瓜的模型,然后从需要预测的瓜中提取特征,放到生成好的好瓜的模型中看概率是多少,在放到生产的坏瓜模型中看概率是多少,哪个概率大就预测其为哪个。

如何用python实现高斯分布

倾然丶 夕夏残阳落幕 提交于 2020-01-20 01:24:56
简单了解高斯分布 百度百科里边解释叫“正态分布”,也称常态分布,若随机变量x服从一个数学期望μ,方差σ²的正态分布,记为N(μ,σ²),其概率密度函数为正太分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度,当μ=0,σ=1时的正态分布是标准正态分布。 一维正态分布 若随机变量X服从一个位置参数μ,尺度参数为σ的概率分布,且其概率密度函数为: 则这个随机变量就称为正态随机变量,正态随机变量服从的分布就是正态分布,记作X-N(μ,σ²),读作X服从N(μ,σ²),或X服从正态分布。 正态分有两个参数,即期望μ和标准差σ,σ²为方差 正态分布是具有两个参数μ和σ²的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数 σ²是此随机变量的方差,所以正态分布记作N(μ,σ²) μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。 σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。 标准正态分布 当μ=0,σ=1时,正态分布就称为标准正态分布 其图像就长这个样子!!!! 单元正态分布有以下规律: σ越大

教你学Python28-朴素贝叶斯简介

假装没事ソ 提交于 2020-01-19 16:56:08
一、引子 最近几天一直没来得及看《机器学习实战》这本书,感觉停滞了很久,因为需要对 AIMI-CN 的规划进行考虑,想了很久做了一些皮毛的东西,决定还是慢慢来按部就班,东西做出来才能说话,当然之后我做这个文章的时候,也尽量再多点自己的东西把,其他人写的多数当参考把,这样才会有更多自己原创的东西,大家才会看,才会认同把~ 二、朴素贝叶斯理论 朴素贝叶斯是贝叶斯决策理论的一部分,所以在讲述朴素贝叶斯之前有必要快速了解一下贝叶斯决策理论。 1、贝叶斯决策理论 假设现在我们有一个数据集,他由两类数据组成,数据分布如下图所示: 我们现在用 p1(x,y) 表示数据点 (x,y) 属于类别 1(图中用圆点表示的类别)的概率,用 p2(x,y) 表示数据点 (x,y) 属于类别 2(图中三角形表示的类别)的概率,那么对于一个新数据点 (x,y),可以用下面的规则来判断它的类别: 如果 p1(x,y) > p2(x,y) ,那么类别为1 如果 p2(x,y) > p1(x,y) ,那么类别为2 也就是说,我们会选择高概率对应的类别。这就是贝叶斯决策理论的核心思想,即选择具有 最高概率 的决策。 2、条件概率 有一个装了 7 块石头的罐子,其中 3 块是白色的,4 块是黑色的。如果从罐子中随机取出一块石头,那么是白色石头的可能性是多少?由于取石头有 7 种可能,其中 3 种为白色

贝叶斯决策理论(1)

自闭症网瘾萝莉.ら 提交于 2020-01-19 06:13:12
  数据来自于一个不完全清楚的过程。以投掷硬币为例,严格意义上讲,我们无法预测任意一次投硬币的结果是正面还是反面,只能谈论正面或反面出现的概率。在投掷过程中有大量会影响结果的不可观测的变量,比如投掷的姿势、力度、方向,甚至风速和地面的材质都会影响结果。也许这些变量实际上是可以观测的,但我们对这些变量对结果的影响缺乏必要的认知,所以退而求其次,把投掷硬币作为一个随机过程来建模,并用概率理论对其进行分析。      概率有时也被解释为频率或可信度,但是在日常生活中,人们讨论的概率经常包含着主观的因素,并不总是能等同于频率或可信度。比如有人分析中国足球队打进下次世界杯的概率是10%,并不是说出现的频率是10%,因为下次比赛还没有开始。我们实际上是说这个结果出现的可能性,由于是主观的,因此不同的人将给出不同的概率。   在数学上,概率研究的是随机现象背后的客观规律。我们对随机没有兴趣,感兴趣的是通过大量随机试验总结出的数学模型。当某个试验可以在完全相同的条件下不断重复时,对于任意事件E(试验的可能结果的集合,事件是集合,不是动作),结果在出现在E中的次数占比趋近于某个常量,这个常数极限是事件E的概率,用P(E)表示。   我们需要对现实世界建模,将现实世界的动作映射为函数,动作结果映射为数。比如把投硬币看作f(z),z是影响结果的一系列不可观测的变量,x 表示投硬币的结果,x = f(z)

Batch Normalization

家住魔仙堡 提交于 2020-01-12 19:24:42
前言: Batch Normalization是深度学习领域在2015年非常热门的一个算法,许多网络应用该方法进行训练,并且取得了非常好的效果。 众所周知,深度学习是应用随机梯度下降法对网络进行训练,尽管随机梯度下降训练神经网络非常有效,但是它有一个缺点,就是需要人为的设定很多参数,比如学习率,权重衰减系数,Dropout比例等。这些参数的选择对训练结果至关重要,以至于训练的大多数精力都耗费在了调参上面。BN算法就可以完美的解决这些问题。当我们使用了BN算法,我们可以去选择比较大的初始学习率,这样就会加快学习的速度;我们还可以不必去理会过拟合中的dropout、正则项约束问题等,因为BN算法可以提高网络的泛化能力;我们再也不需要使用局部响应归一化层,因为BN本身就是归一化的网络;还可以打乱训练数据,防止每批训练的时候,某一个样本经常被选到。通常在训练神经网络之前,我们都会对数据进行归一化处理,为什么呢?因为神经网络训练实际是为了学习数据的分布情况,一旦训练数据与测试数据分布不同,那么网络的泛化能力也会大大降低。另外,如果每一批的训练数据都不同,那么神经网络就会去适应不同训练数据的分布,这样就会大大降低网络训练的速度。深度学习的训练是一个复杂的过程,如果前几层的数据分布发生了变化,那么后面就会积累下去,不断放大,这样就会导致神经网络在训练过程中不断适应新的数据分布,影响网络训练的速度