fma

How is fma() implemented

﹥>﹥吖頭↗ 提交于 2019-11-28 01:28:15
问题 According to the documentation, there is a fma() function in math.h . That is very nice, and I know how FMA works and what to use it for. However, I am not so certain how this is implemented in practice? I'm mostly interested in the x86 and x86_64 architectures. Is there a floating-point (non-vector) instruction for FMA, perhaps as defined by IEEE-754 2008? Is FMA3 or FMA4 instruction used? Is there an intrinsic to make sure that a real FMA is used, when the precision is relied upon? 回答1: The

Significant FMA performance anomaly experienced in the Intel Broadwell processor

有些话、适合烂在心里 提交于 2019-11-27 18:59:50
Code1: vzeroall mov rcx, 1000000 startLabel1: vfmadd231ps ymm0, ymm0, ymm0 vfmadd231ps ymm1, ymm1, ymm1 vfmadd231ps ymm2, ymm2, ymm2 vfmadd231ps ymm3, ymm3, ymm3 vfmadd231ps ymm4, ymm4, ymm4 vfmadd231ps ymm5, ymm5, ymm5 vfmadd231ps ymm6, ymm6, ymm6 vfmadd231ps ymm7, ymm7, ymm7 vfmadd231ps ymm8, ymm8, ymm8 vfmadd231ps ymm9, ymm9, ymm9 vpaddd ymm10, ymm10, ymm10 vpaddd ymm11, ymm11, ymm11 vpaddd ymm12, ymm12, ymm12 vpaddd ymm13, ymm13, ymm13 vpaddd ymm14, ymm14, ymm14 dec rcx jnz startLabel1 Code2: vzeroall mov rcx, 1000000 startLabel2: vmulps ymm0, ymm0, ymm0 vmulps ymm1, ymm1, ymm1 vmulps ymm2

Is there any scenario where function fma in libc can be used?

倖福魔咒の 提交于 2019-11-27 18:55:57
问题 I come across this page and find there is an odd floating multiply add function -- fma and fmaf . It says that the result is something like: (x * y) + z #fma(x,y,z) And the value is infinite precision and round once to the result format . However, AFAICT I've never seen such a ternary operation before. So I'm wondering what's the cumstom usage for this func. 回答1: The important aspect of the fused-multiply-add instruction is the (virtually) infinite precision of the intermediate result. This

Preventing GCC from automatically using AVX and FMA instructions when compiled with -mavx and -mfma

痞子三分冷 提交于 2019-11-27 14:13:18
How can I disable auto-vectorization with AVX and FMA instructions? I would still prefer the compiler to employ SSE and SSE2 automatically, but not FMA and AVX. My code that uses AVX checks for its availability, but GCC doesn't do it when auto-vectorizing. So if I compile with -mfma and run the code on any CPU prior to Haswell I get SIGILL . How to solve this issue? What you want to do is compile different object files for each instruction set you are targeting. Then create a cpu dispatcher which asks CPUID for the available instruction set and then jumps to the appropriate version of the

Fused multiply add and default rounding modes

我只是一个虾纸丫 提交于 2019-11-27 07:53:47
With GCC 5.3 the following code compield with -O3 -fma float mul_add(float a, float b, float c) { return a*b + c; } produces the following assembly vfmadd132ss %xmm1, %xmm2, %xmm0 ret I noticed GCC doing this with -O3 already in GCC 4.8 . Clang 3.7 with -O3 -mfma produces vmulss %xmm1, %xmm0, %xmm0 vaddss %xmm2, %xmm0, %xmm0 retq but Clang 3.7 with -Ofast -mfma produces the same code as GCC with -O3 fast . I am surprised that GCC does with -O3 because from this answer it says The compiler is not allowed to fuse a separated add and multiply unless you allow for a relaxed floating-point model.

Optimize for fast multiplication but slow addition: FMA and doubledouble

纵饮孤独 提交于 2019-11-27 05:27:27
When I first got a Haswell processor I tried implementing FMA to determine the Mandelbrot set. The main algorithm is this: intn = 0; for(int32_t i=0; i<maxiter; i++) { floatn x2 = square(x), y2 = square(y); //square(x) = x*x floatn r2 = x2 + y2; booln mask = r2<cut; //booln is in the float domain non integer domain if(!horizontal_or(mask)) break; //_mm256_testz_pd(mask) n -= mask floatn t = x*y; mul2(t); //mul2(t): t*=2 x = x2 - y2 + cx; y = t + cy; } This determines if n pixels are in the Mandelbrot set. So for double floating point it runs over 4 pixels ( floatn = __m256d , intn = __m256i ).

How to use Fused Multiply-Add (FMA) instructions with SSE/AVX

扶醉桌前 提交于 2019-11-26 21:56:21
I have learned that some Intel/AMD CPUs can do simultanous multiply and add with SSE/AVX: FLOPS per cycle for sandy-bridge and haswell SSE2/AVX/AVX2 . I like to know how to do this best in code and I also want to know how it's done internally in the CPU. I mean with the super-scalar architecture. Let's say I want to do a long sum such as the following in SSE: //sum = a1*b1 + a2*b2 + a3*b3 +... where a is a scalar and b is a SIMD vector (e.g. from matrix multiplication) sum = _mm_set1_ps(0.0f); a1 = _mm_set1_ps(a[0]); b1 = _mm_load_ps(&b[0]); sum = _mm_add_ps(sum, _mm_mul_ps(a1, b1)); a2 = _mm

Significant FMA performance anomaly experienced in the Intel Broadwell processor

大憨熊 提交于 2019-11-26 19:42:25
问题 Code1: vzeroall mov rcx, 1000000 startLabel1: vfmadd231ps ymm0, ymm0, ymm0 vfmadd231ps ymm1, ymm1, ymm1 vfmadd231ps ymm2, ymm2, ymm2 vfmadd231ps ymm3, ymm3, ymm3 vfmadd231ps ymm4, ymm4, ymm4 vfmadd231ps ymm5, ymm5, ymm5 vfmadd231ps ymm6, ymm6, ymm6 vfmadd231ps ymm7, ymm7, ymm7 vfmadd231ps ymm8, ymm8, ymm8 vfmadd231ps ymm9, ymm9, ymm9 vpaddd ymm10, ymm10, ymm10 vpaddd ymm11, ymm11, ymm11 vpaddd ymm12, ymm12, ymm12 vpaddd ymm13, ymm13, ymm13 vpaddd ymm14, ymm14, ymm14 dec rcx jnz startLabel1

Fused multiply add and default rounding modes

蹲街弑〆低调 提交于 2019-11-26 17:42:51
问题 With GCC 5.3 the following code compield with -O3 -fma float mul_add(float a, float b, float c) { return a*b + c; } produces the following assembly vfmadd132ss %xmm1, %xmm2, %xmm0 ret I noticed GCC doing this with -O3 already in GCC 4.8. Clang 3.7 with -O3 -mfma produces vmulss %xmm1, %xmm0, %xmm0 vaddss %xmm2, %xmm0, %xmm0 retq but Clang 3.7 with -Ofast -mfma produces the same code as GCC with -O3 fast . I am surprised that GCC does with -O3 because from this answer it says The compiler is

Preventing GCC from automatically using AVX and FMA instructions when compiled with -mavx and -mfma

不羁的心 提交于 2019-11-26 16:38:30
问题 How can I disable auto-vectorization with AVX and FMA instructions? I would still prefer the compiler to employ SSE and SSE2 automatically, but not FMA and AVX. My code that uses AVX checks for its availability, but GCC doesn't do it when auto-vectorizing. So if I compile with -mfma and run the code on any CPU prior to Haswell I get SIGILL . How to solve this issue? 回答1: What you want to do is compile different object files for each instruction set you are targeting. Then create a cpu