如何手动优化神经网络模型(附链接)
翻译:陈丹 校对:车前子 本文 约5400字 ,建议阅读 15 分钟 本文是一个教授如何优化神经网络模型的基础教程,提供了具体的实战代码供读者学习和实践。 深度学习的神经网络是采用随机梯度下降优化算法对训练数据进行拟合。 利用误差反向传播算法对模型的权值进行更新。优化和权值更新算法的组合是经过仔细挑选的,是目前已知的最有效的拟合神经网络的方法。 然而,也可以使用交替优化算法将神经网络模型拟合到训练数据集。这是一个有用的练习,可以了解更多关于神经网络的是如何运转的,以及应用机器学习时优化的中心性。具有非常规模型结构和不可微分传递函数的神经网络,也可能需要它。 在本教程中,您将了解如何手动优化神经网络模型的权重。 完成本教程后,您将知道: 如何从头开始开发神经网络模型的正向推理通路。 如何优化二值分类感知器模型的权值。 如何利用随机爬山算法优化多层感知器模型的权值。 我们开始吧。 图源土地管理局,权利归其所有 教程概述 本教程分为三个部分:它们是: 优化神经网络 优化感知器模型 优化多层感知器 优化神经网络 深度学习或神经网络是一种灵活的机器学习。 它们是受大脑结构和功能的启发而来的,由节点和层次组成的模型。神经网络模型的工作原理是将给定的输入向量传播到一个或多个层,以产生可用于分类或回归预测建模的数值输出。 通过反复将模型暴露在输入和输出示例中