How to explicitly use an induction principle in coq?
问题 I'm trying to prove symmetry of propositional identity with the induction principal explicitly in Coq, but can't do it with the induction principle like I can in agda. I don't know how to locally declare a variable in Coq, nor do I know how to unfold a definition, as you can see below. How can I get a proof that resembles the agda one below? Inductive Id (A : Type) (x : A) : A -> Type := | refl : Id A x x. (* trivial with induction *) Theorem symId {A} {x y} : Id A x y -> Id A y x. Proof.