differential privacy

Advances and Open Problems in Federated Learning

老子叫甜甜 提交于 2020-04-24 07:03:37
挖个大坑,等有空了再回来填。心心念念的大综述呀(吐血三升)! 郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 项目地址: https://github.com/open-intelligence/federated-learning-chinese 具体内容参见项目地址,欢迎大家在项目的issue上提出问题!!! Abstract   联邦学习(FL)是一种机器学习环境,其中许多客户端(如移动设备或整个组织)在中央服务器(如服务提供商)的协调下协同训练模型,同时保持训练数据去中心化。FL体现了集中数据收集和最小化的原则,可以减轻传统的中心化机器学习和数据科学方法带来的许多系统隐私风险和成本。在FL研究爆炸式增长的推动下,本文讨论了近年来的进展,提出了大量的开放性问题和挑战。 Contents 1 Introduction   1.1 The Cross-Device Federated Learning Setting     1.1.1 The Lifecycle of a Model in Federated Learning     1.1.2 A Typical Federated Training Process   1.2 Federated Learning Research   1.3 Organization 2 Relaxing the Core

Functional mechanism: regression analysis under differential privacy_阅读报告

血红的双手。 提交于 2020-04-23 01:43:42
Functional mechanism: regression analysis under differential privacy 论文学习报告 组员:裴建新 赖妍菱 周子玉 2020-03-10 1 背景 当今社会,互联网技术正日益深入人们的生活.随着网络和信息化产业的迅猛发展,数据以前所未有的速度不断地增长和累积,大数据已经成为学术界和产业界的热点,同时改变着人们的日常生活.在大数据背景下,数据量相对以往有了质的飞跃.同时,人们对信息处理的速度、信息来源的多样性信息处理的价值也有了更高的要求.然而,随着从大数据中挖掘出各种各样的敏感信息,数据参与者的隐私受到了严重威胁,这迫使人们加强对数据的隐私保护. 虽然学术界并没有通用的隐私概念,但一般意义下,通常将用户认为自身敏感且不愿公开的部分信息称为隐私.然而,如果直接将这部分信息屏蔽,数据的价值就会大打折扣.可以说,在完善地保护敏感信息的同时,有效地释放对公众有益的信息,这本身就是矛盾的事.在社会学方面,可以制定保护个人信息的法律,对恶意窥探他人隐私的行为进行惩罚,但是这种方法实施起来需要大量的人力资源,效果也不甚理想.因此,从技术上解决这个问题变得更加实际,通常的做法是通过“去识别”的方式使部分数据匿名.但不幸的是,随着数据量的增长,数据之间的关联度日益增强,一些经过“去识别”处理的匿名数据