Advances and Open Problems in Federated Learning
挖个大坑,等有空了再回来填。心心念念的大综述呀(吐血三升)! 郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 项目地址: https://github.com/open-intelligence/federated-learning-chinese 具体内容参见项目地址,欢迎大家在项目的issue上提出问题!!! Abstract 联邦学习(FL)是一种机器学习环境,其中许多客户端(如移动设备或整个组织)在中央服务器(如服务提供商)的协调下协同训练模型,同时保持训练数据去中心化。FL体现了集中数据收集和最小化的原则,可以减轻传统的中心化机器学习和数据科学方法带来的许多系统隐私风险和成本。在FL研究爆炸式增长的推动下,本文讨论了近年来的进展,提出了大量的开放性问题和挑战。 Contents 1 Introduction 1.1 The Cross-Device Federated Learning Setting 1.1.1 The Lifecycle of a Model in Federated Learning 1.1.2 A Typical Federated Training Process 1.2 Federated Learning Research 1.3 Organization 2 Relaxing the Core