cudnn

Failed to get convolution algorithm error ~ tensorflow-gpu on ubuntu 20.04

假如想象 提交于 2020-05-17 06:05:32
问题 I have a NVIDIA 2070 RTX GPU, and my OS is Ubuntu20.04. I have installed the tensorflow-gpu package with conda. I have not installed the CUDA-toolkit I believe it also installs the required libraries from the CUDA-toolkit to use gpu-acceleration, as conda install tensorflow-gpu gives the following list of packages that will be installed: Collecting package metadata (current_repodata.json): done Solving environment: done ## Package Plan ## environment location: /home/psychotechnopath/anaconda3

Verifying if GPU is actually used in Keras/Tensorflow, not just verified as present

杀马特。学长 韩版系。学妹 提交于 2020-05-09 08:00:26
问题 I've just built a deep learning rig (AMD 12 core threadripper; GeForce RTX 2080 ti; 64Gb RAM). I originally wanted to install CUDnn and CUDA on Ubuntu 19.0, but the installation was too painful and after reading around a bit, I decided to switch to Windows 10... After doing several installs of tensorflow-gpu, in and outside condas, I ran into further issues which I assumed was down to the CUDnn-CUDA-tensorflow compatibility, so uninstalled various versions of CUDA and tf. My output from nvcc

Tensorflow 2.0 can't use GPU, something wrong in cuDNN? :Failed to get convolution algorithm. This is probably because cuDNN failed to initialize

…衆ロ難τιáo~ 提交于 2020-04-10 06:02:50
问题 I am trying to understand and debug my code. I try to predict with a CNN model developed under tf2.0/tf.keras on GPU, but get those error messages. could someone help me to fix it? here is my environmental configuration enviroments: python 3.6.8 tensorflow-gpu 2.0.0-rc0 nvidia 418.x CUDA 10.0 cuDNN 7.6+** and the log file, 2019-09-28 13:10:59.833892: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0 2019-09-28 13:11:00.228025

Tensorflow 2.0 can't use GPU, something wrong in cuDNN? :Failed to get convolution algorithm. This is probably because cuDNN failed to initialize

浪尽此生 提交于 2020-04-10 06:01:11
问题 I am trying to understand and debug my code. I try to predict with a CNN model developed under tf2.0/tf.keras on GPU, but get those error messages. could someone help me to fix it? here is my environmental configuration enviroments: python 3.6.8 tensorflow-gpu 2.0.0-rc0 nvidia 418.x CUDA 10.0 cuDNN 7.6+** and the log file, 2019-09-28 13:10:59.833892: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10.0 2019-09-28 13:11:00.228025

window10上安装python+CUDA+CuDNN+TensorFlow

纵饮孤独 提交于 2020-04-06 08:53:09
确认显卡支持 cuda 首先确认显卡是否是 英伟达 NVIDIA 的,当然 AMD 也支持,但是不常用; NVIDIA 显卡有 GTX Geforce、Quadra 和 Tesla 三大系列,然后到如下网站查看是否支持 Cuda https://developer.nvidia.com/cuda-gpus 点击如下链接即可查看每个系列支持 cuda 的显卡版本 安装显卡驱动 在安装CUDA过程中,你可能各种尝试,把显卡驱动整坏了,可以重新安装;    【我就是这样,然后死活装不上 cuda,后来重装驱动,搞定】 在 https://www.nvidia.cn/Download/index.aspx?lang=cn 获取自己显卡的最新驱动版本; 下载,双击安装; 安装 cuda 驱动 访问CUDA的下载网站: https://developer.nvidia.com/cuda-toolkit ,可以看到CUDA目前的最新版本,可以通过选择下面的“Legacy Releases”链接来下载旧版本的驱动; 建议选择自定义安装,然后只勾选cuda,建议安装在默认文件路径; 把 安装路径下的 bin 目录设为 环境变量 :C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.0\bin 安装 cudnn 库 CuDNN库(The

linux相关

∥☆過路亽.° 提交于 2020-03-25 19:07:17
1. 查看cpu相关信息,包括型号、主频、内核信息等 cat /proc/cpuinfo 2. 查看Linux内核版本命令 cat /proc/version 或者使用 uname -a 查看电脑以及操作系统的相关信息 3.查看cuda版本 cat /usr/local/cuda/version.txt 4.查看cudnn版本 cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2 5.显示当前路径 pwd 来源: https://www.cnblogs.com/kongle666/p/12567679.html

CuDNNLSTM: UnknownError: Fail to find the dnn implementation

青春壹個敷衍的年華 提交于 2020-03-18 06:10:50
问题 I have run the model with LSTM as the first layer successfully. But out of curiosity, I replace LSTM with CuDNNLSTM. But after model.fit, it replied the following error message: UnknownError: Fail to find the dnn implementation. [[{{node cu_dnnlstm_5/CudnnRNN}} = CudnnRNN[T=DT_FLOAT, _class=["loc:@training_2/Adam/gradients/cu_dnnlstm_5/CudnnRNN_grad/CudnnRNNBackprop"], direction="unidirectional", dropout=0, input_mode="linear_input", is_training=true, rnn_mode="lstm", seed=87654321, seed2=0,

【linux】安装cuda+cudnn

风流意气都作罢 提交于 2020-03-17 09:18:09
检查Driver Note: 一台机器只能对应一个nvidia driver,而一个nvidia driver可以对应多个cuda。只要在自己的路径下把cuda指定成特定版本就行。 尽量不要使用/usr/local/下面的默认cuda/,防止因为ln对象会发生变化而造成影响。 nvidia driver版本 决定了 可用的cuda范围, 进而决定了 可用的tensorflow-gpu版本。所以,每次上一台新机器前,首先确定nvidia driver版本。 查看nvidia driver版本: cat /proc/driver/nvidia/version Table 1. CUDA Toolkit and Compatible Driver Versions : 安装Cuda 查看本机操作系统: cat /etc/issue 前往英伟达官网,下载对应的cuda版本: Note: 以下以cuda9.0为例。 安装cuda: sudo sh cuda_9.0.176_384.81_linux.run Note: 勿装driver!否则会安装失败! 写入对应路径: vim ~/.bashrc export PATH = /usr/local/cuda-9.0/bin: $PATH export LD_LIBRARY_PATH = /usr/local/cuda-9.0/lib64:

Mask_RCNN入门(三)—— 使用gpu进行训练和测试

匆匆过客 提交于 2020-03-16 15:26:02
cpu换成gpu 之前的工作: Mask_RCNN入门(一)—— 跑通代码 Mask_RCNN入门(二)—— 训练自己的数据集 其实是在CPU上跑的,这一点可以在requirements.txt中可以看到: tensorflow就是CPU版,GPU版本是tensorflow-gpu。 所以第一步是卸载tensorflow,安装tensorflow-gpu,为了避免兼容性冲突,tensorflow-gpu同样使用1.6.0版本。 卸载tensorflow: python -m pip uninstall tensorflow 安装tensorflow-gpu: python -m pip install tensorflow-gpu==1.6.0 driver,CUDA,cuDNN和tensorflow-gpu 安装完tensorflow-gpu之后,如果直接运行demo.py或者train.py会报错: ImportError: Could not find 'cudart64_90.dll’ 其实信息明确了,到指定网址下载安装CUDA 9.0。 这里开一下上帝视角:CUDA,包括后面同样会报错需要下载的cuDNN,它们是什么,还有和CUDA版本紧密相关的显卡驱动又是什么? driver 这个最好理解,这个和键盘驱动,鼠标驱动,打印机驱动等等没本质区别,计算机(确切地说是CPU

为电脑配置GPU加速(win10+python3.6+tensorflow-gpu1.12.0)

穿精又带淫゛_ 提交于 2020-03-12 11:28:47
本教程基于win10系统,所用到的工具为Anaconda3,PyCharm 你需要已经安装好以上工具,具体操作略。 首先确定你的显卡是否支持gpu加速,可在 nvidia官网 查看是否有你的显卡所对应的算力,如图。 为了不影响其他的工作环境,本教程创建anaconda虚拟python环境,打开Anaconda Prompt,输入指令 conda create - n your_env_name python==3 . 6 待安装完成后,输入指令 conda env list conda会罗列出所有你所创建的环境,如图 输入如下指令,进入conda虚拟python环境,接下来的所有操作都在此虚拟环境下进行 activate your_env_name 如图进入python虚拟环境 安装tensorflow-gpu 接下来输入如下指令安装tensorflow-gpu pip install tensorflow - gpu 如需安装指定版本(例如1.12.0)键入 pip install tensorflow - gpu==1 . 12 . 0 安装过程会安装tensorflow-gpu及其依赖包,耗时略长,建议更换国内源,例如中科大、清华、豆瓣等 (tensorflow还有离线安装方式,本教程略) 待安装完成后并不能正常运行,会报错DLL缺少模块