对抗网络DCGAN 生成图片的应用
DCGAN原理介绍 我们知道深度学习中对图像处理应用最好的模型是CNN,那么如何把CNN与GAN结合?DCGAN是这方面最好的尝试之一(论文地址: [1511.06434] Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks ) DCGAN的原理和GAN是一样的,这里就不在赘述。它只是把上述的G和D换成了两个卷积神经网络(CNN)。但不是直接换就可以了,DCGAN对卷积神经网络的结构做了一些改变,以提高样本的质量和收敛的速度,这些改变有: 取消所有pooling层。G网络中使用转置卷积(transposed convolutional layer)进行上采样,D网络中用加入stride的卷积代替pooling。 在D和G中均使用batch normalization 去掉FC层,使网络变为全卷积网络 G网络中使用ReLU作为激活函数,最后一层使用tanh D网络中使用LeakyReLU作为激活函数 DCGAN中的G网络示意: DCGAN在Tensorflow中已经有人造好了轮子: https://github.com/carpedm20/DCGAN-tensorflow ,我们直接使用这个代码就可以了。 如果要训练mnist 执行python