B树、B-树、B+树、B树都是什么
B 树、 B- 树、 B+ 树、 B* 树都是什么 B 树 即二叉搜索树: 1. 所有非叶子结点至多拥有两个儿子( Left 和 Right ); 2. 所有结点存储一个关键字; 3. 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树; 如: B 树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字; 如果 B 树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么 B 树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变 B 树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销; 如: 但 B 树在经过多次插入与删除后,有可能导致不同的结构: 右边也是一个 B 树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用 B 树还要考虑尽可能让 B 树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题; 实际使用的 B 树都是在原 B 树的基础上加上平衡算法,即“平衡二叉树”;如何保持 B 树结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在 B 树中插入和删除结点的策略; B- 树 是一种多路搜索树(并不是二叉的):