《Computer Vision:Algorithms and Applications》学习笔记(一)——图像旋转算法与实现
昨天和今天学习了《Computer Vision:Algorithms and Applications》中第二章“Image formation”前半部分,主要是如何表示2D、3D图像中的点、线、面等,以及如何用公式推导出2D图形的几何变换,如位移、旋转、放缩、仿射变换、投射等,如下图所示: 一、图像旋转方法简介 其中的图像旋转是一种常用的数字图像处理技术。由于旋转后图像像素点坐标不再是整数,所以旋转后必须对新的像素点灰度值进行插值运算。目前常用的方法有最近邻插值法、线性插值法和样条插值法。文献介绍,最近邻法速度快,方法简单,但生成图像效果较差;样条插值法计算精度高,效果好,但计算复杂,速度较慢;线性插值法(E.g. 双线性插值法)效果较好,运行时间较短。另外,实现赋值的方法分为正向映射法和反向映射法:正向映射法是指,从原始图像坐标出发,计算出在旋转图像上坐标,然后将原始图像该坐标的灰度值赋给对应旋转图像该坐标点;反向映射法则反之。 本文将分别采用基于最近邻取值的正向映射法、基于最近邻取值的反向映射法、基于双线性插值的反向映射法实现图像旋转,并对比三种方法的效果。 二、本文方法 1. 基于最近邻取值的正向映射法 这种方法最简单,也最直观,先考虑图像旋转原理: 以顺时针旋转为例来堆到旋转变换公式。如下图所示。 旋转前: x 0 =rcosb ; y 0 =rsinb 旋转 a