因子分析
1 问题 之前我们考虑的训练数据中样例 的个数m都远远大于其特征个数n,这样不管是进行回归、聚类等都没有太大的问题。然而当训练样例个数m太小,甚至m<<n的时候,使用梯度下降法进行回归时,如果初值不同,得到的参数结果会有很大偏差(因为方程数小于参数个数)。另外,如果使用多元高斯分布(Multivariate Gaussian distribution)对数据进行拟合时,也会有问题。让我们来演算一下,看看会有什么问题: 多元高斯分布的参数估计公式如下: 分别是求mean和协方差的公式, 表示样例,共有m个,每个样例n个特征,因此 是n维向量, 是n*n协方差矩阵。 当m<<n时,我们会发现 是奇异阵( ),也就是说 不存在,没办法拟合出多元高斯分布了,确切的说是我们估计不出来 。 如果我们仍然想用多元高斯分布来估计样本,那怎么办呢? 2 限制协方差矩阵 当没有足够的数据去估计 时,那么只能对模型参数进行一定假设,之前我们想估计出完全的 (矩阵中的全部元素),现在我们假设 就是对角阵(各特征间相互独立),那么我们只需要计算每个特征的方差即可,最后的 只有对角线上的元素不为0 回想我们之前讨论过的二维多元高斯分布的几何特性,在平面上的投影是个椭圆,中心点由 决定,椭圆的形状由 决定。 如果变成对角阵,就意味着椭圆的两个轴都和坐标轴平行了。 如果我们想对 进一步限制的话