信息论、贝叶斯及机器学习
信息论及贝叶斯 引言 1956年,让机器来做聪明的事情的科学被称为“人工智能”。直到1997年,人类才创造出来能下象棋的电脑并打败了世界冠军。通过这样的一个例子及数字计算机的发展历史表明,感知其实是一个很难解决的问题。但是,我们的脑却能够很简单的解决这个问题,这是否意味着,数字计算机不是人脑的一个好隐喻?或者,我们需要为计算机的运行找新的运算方式? 同时信息论的发展使得我们看到物理事件和电脉冲是如何转化为精神事件和讯息的。但是,在其最初表达中存在一个根本的问题。一条信息中的信息量,或者更通俗的说,任何刺激中的信息量完全由那个刺激源来决定,这种界定信息的方法看上去很完美,实际上会产生自相矛盾的结果。 比如在图像的处理中,图片是由像素点组成的,以此形成不同的颜色。比如看这样一张图片,它是一张简单的以白色为背景的黑色正方形的图片,这张图片中的哪些要素含有最多的信息?当我们的眼睛扫过一个颜色不变的区域的时候, 因为没有任何的改变,就不会产生任何的惊奇感。而当我们眼睛扫到边缘的时候,颜色突然变化,我们就会感到“惊奇”。因此,根据信息论,图片的边缘所含的信息量是最大的,这和我们的直觉也确实是相符的,假如我们用轮廓来代替这个 物体,换句话说,只留下有信息的边缘,我们仍然能够认出这个物体。 但是,这种表述实际上是自相矛盾的,按照这种界定,当我们用眼睛扫一幅图片的时候,我们预测不到接下来会发生什么