上海交大课程MA430-偏微分方程续论(索伯列夫空间)之总结(Sobolev Space)
我们所用的是C.L.Evans " Partial Differential Equations " $\def\dashint{\mathop{\mathchoice{\,\rlap{-}\!\!\int} {\rlap{\raise.15em{\scriptstyle -}}\kern-.2em\int} {\rlap{\raise.09em{\scriptscriptstyle -}}\!\int} {\rlap{-}\!\int}}\nolimits}$ $\newcommand\argmin{\operatorname{arg\,min}}$ $\newcommand\esssup{\operatorname{ess\,sup}}$ $\newcommand\supp{\operatorname{supp}}$ 1.Prelimary 1.1 Variational method For a partial differential equation(for instance, the Poisson equation): $$ \left\{ \begin{array}{rl} -\Delta u(x) & = f(x) \quad\mbox{ if $x\in B\subseteq\mathbb{R}$} \\ u(x)|_{\partial B} & = 0