I'm reading some automated weather data from the web. The observations occur every 5 minutes and are compiled into monthly files for each weather station. Once I'm done parsing a file, the DataFrame looks something like this:
Sta Precip1hr Precip5min Temp DewPnt WindSpd WindDir AtmPress Date 2001-01-01 00:00:00 KPDX 0 0 4 3 0 0 30.31 2001-01-01 00:05:00 KPDX 0 0 4 3 0 0 30.30 2001-01-01 00:10:00 KPDX 0 0 4 3 4 80 30.30 2001-01-01 00:15:00 KPDX 0 0 3 2 5 90 30.30 2001-01-01 00:20:00 KPDX 0 0 3 2 10 110 30.28
The problem I'm having is that sometimes a scientist goes back and corrects observations -- not by editing the erroneous rows, but by appending a duplicate row to the end of a file. Simple example of such a case is illustrated below:
import pandas import datetime startdate = datetime.datetime(2001, 1, 1, 0, 0) enddate = datetime.datetime(2001, 1, 1, 5, 0) index = pandas.DatetimeIndex(start=startdate, end=enddate, freq='H') data = {'A' : range(6), 'B' : range(6)} data1 = {'A' : [20, -30, 40], 'B' : [-50, 60, -70]} df1 = pandas.DataFrame(data=data, index=index) df2 = pandas.DataFrame(data=data1, index=index[:3]) df3 = df1.append(df2) df3 A B 2001-01-01 00:00:00 20 -50 2001-01-01 01:00:00 -30 60 2001-01-01 02:00:00 40 -70 2001-01-01 03:00:00 3 3 2001-01-01 04:00:00 4 4 2001-01-01 05:00:00 5 5 2001-01-01 00:00:00 0 0 2001-01-01 01:00:00 1 1 2001-01-01 02:00:00 2 2
And so I need df3
to evenutally become:
A B 2001-01-01 00:00:00 0 0 2001-01-01 01:00:00 1 1 2001-01-01 02:00:00 2 2 2001-01-01 03:00:00 3 3 2001-01-01 04:00:00 4 4 2001-01-01 05:00:00 5 5
I thought that adding a column of row numbers (df3['rownum'] = range(df3.shape[0])
) would help me select out the bottom-most row for any value of the DatetimeIndex
, but I am stuck on figuring out the group_by
or pivot
(or ???) statements to make that work.