乘法逆元
对于缩系中的元素,每个数a均有唯一的与之对应的乘法逆元x,使得ax≡1(mod n)
逆元的含义:模n意义下,1个数a如果有逆元x,那么除以a相当于乘以x。
逆元的应用
当求解公式:(a/b)%m 时,因b可能会过大,会出现爆精度的情况,所以需变除法为乘法:设c是b的逆元,则有b*c≡1(mod m);
则(a/b)%m = (a/b)*1%m = (a/b)*b*c%m = a*c(mod m);
即a/b的模等于a*b的逆元的模;
逆元就是这样应用的;
求逆元的方法
(1)费马小定理
(p-1)
const int mod = 1000000007; long long quickpow(long long a, long long b) { if (b < 0) return 0; long long ret = 1; a %= mod; while(b) { if (b & 1) ret = (ret * a) % mod; b >>= 1; a = (a * a) % mod; } return ret; } long long inv(long long a) { return quickpow(a, mod - 2); }
(2)拓展欧几里德
我们都知道模就是余数,比如12%5=12-5*2=2,18%4=18-4*4=2。(/是程序运算中的除)
那么ax≡1 (mod p)即ax-yp=1.把y写成+的形式就是ax+py=1,为方便理解下面我们把p写成b就是ax+by=1。就表示x是a的模b乘法逆元,y是b的模a乘法逆元。然后就可以用扩展欧几里得求了。
算法复杂度O(logn)
ll extend_gcd(ll a, ll b, ll &x, ll &y) { if (b == 0) { x = 1, y = 0; return a; } else { ll r = extend_gcd(b, a % b, y, x); y -= x * (a / b); return r; } } ll inv(ll a, ll n) { ll x, y; extend_gcd(a, n, x, y); x = (x % n + n) % n; return x; }