1. 基本概念:
损失函数(loss function):计算的是一个样本的误差
代价函数(cost function):是整个训练集上所有样本误差的平均
目标函数:代价函数 + 正则化项
2. 实际应用
损失函数和代价函数是同一个东西,目标函数是一个与他们相关但更广的概念,举例说明:
上面三个图的曲线函数依次为f1(x),f2(x),f3(x),我们想用这三个函数分别来拟合真实值Y。
我们给定x,这三个函数都会输出一个f(X),这个输出的f(X)与真实值Y可能是相同的,也可能是不同的,为了表示我们拟合的好坏,我们就用一个函数来度量拟合的程度。这个函数就称为损失函数,或者叫代价函数。
损失函数越小,就代表模型拟合的越好。那是不是我们的目标就只是让loss function越小越好呢?还不是。这个时候还有一个概念叫风险函数(risk function)。风险函数是损失函数的期望,这是由于我们输入输出的(X,Y)遵循一个联合分布,但是这个联合分布是未知的,所以无法计算。但是我们是有历史数据的,就是我们的训练集,f(X)关于训练集的平均损失称作经验风险(empirical risk),所以我们的目标就是最小化经验风险。
如果到这一步就完了的话,那我们看上面的图,那肯定是最右面的f3(x)的经验风险函数最小了,因为它对历史的数据拟合的最好嘛。但是我们从图上来看它肯定不是最好的,因为它过度学习历史数据,导致它在真正预测时效果会很不好,这种情况称为过拟合(over-fitting)。为什么会造成这种结果?大白话说就是它的函数太复杂了,都有四次方了,这就引出了下面的概念,我们不仅要让经验风险最小化,还要让结构风险最小化。
这个时候就定义了一个函数J(f),这个函数专门用来度量模型的复杂度,在机器学习中也叫正则化(regularization)。常用的有L1, L2范数。到这一步我们就可以说我们最终的优化函数是:
即最优化经验风险和结构风险,而这个函数就被称为目标函数
本文转载自 https://blog.csdn.net/baidu_31437863/article/details/90265058