在分布式系统领域有个著名的CAP定理(C-数据一致性;A-服务可用性;P-服务对网络分区故障的容错性,这三个特性在任何分布式系统中不能同时满足,最多同时满足两个)
eureka:
cap:实现了AP
服务注册:客户端和服务端在eureka中注册,采用心跳机制,在出现网络故障时,大批量注册的服务,会被检测到不可用,此时eureka注册的服务节点会处于“自我保护模式”,同时eureka会保存这些节点的注册信息,当网络恢复后,服务节点会退出“自我保护模式”,Eureka的哲学是,同时保留”好数据“与”坏数据“总比丢掉任何”好数据“要更好,所以这种模式在实践中非常有效。
客户端缓存:当eureka所有节点都不能正常使用时,客户端也可以通过缓存的服务注册信息,消费者服务仍然可以通过Eureka客户端查询与获取注册服务信息。
架构设计:Eureka就是为发现服务所设计的,它有独立的客户端程序库,同时提供心跳服务、服务健康监测、自动发布服务与自动刷新缓存的功能。但是,如果使用ZooKeeper你必须自己来实现这些功能,Eureka提供了一个web-based的图形化的运维界面,在这个界面中可以查看Eureka所管理的注册服务的运行状态信息:是否健康,运行日志等。Eureka甚至提供了Restful-API接口,方便第三方程序集成Eureka的功能。
zookeeper
cap:实现了CP
服务注册:采用主-从机制,所有节点不可能保证任何时候都能缓存所有的服务注册信息,当有节点不可用时,ZooKeeper会将它们都从自己管理范围中剔除出去,外界就不能访问到这些节点了,即便这些节点本身是“健康”的,可以正常提供服务的;所以导致到达这些节点的服务请求被丢失了。(注:这也是为什么ZooKeeper不满足CAP中A的原因)
架构设计:zookeeper设计是为了实现一致性、容错性,保证每个节点的数据保持一致,zookeeper在选举时,如果未达到合理选举票数时,zookeeper集群是不可用的,同时也不会提供服务发现;
一致性实现:ZooKeeper为高可用的一致性协调框架,自然的ZooKeeper也有着一致性算法的实现,ZooKeeper使用的是ZAB协议作为数据一致性的算法, ZAB(ZooKeeper Atomic Broadcast ) 全称为:原子消息广播协议;ZAB可以说是在Paxos算法基础上进行了扩展改造而来的,ZAB协议设计了支持崩溃恢复,ZooKeeper使用单一主进程Leader用于处理客户端所有事务请求,采用ZAB协议将服务器数状态以事务形式广播到所有Follower上;由于事务间可能存在着依赖关系,ZAB协议保证Leader广播的变更序列被顺序的处理,:一个状态被处理那么它所依赖的状态也已经提前被处理;ZAB协议支持的崩溃恢复可以保证在Leader进程崩溃的时候可以重新选出Leader并且保证数据的完整性;在ZooKeeper中所有的事务请求都由一个主服务器也就是Leader来处理,其他服务器为Follower,Leader将客户端的事务请求转换为事务Proposal,并且将Proposal分发给集群中其他所有的Follower,然后Leader等待Follwer反馈,当有 过半数(>=N/2+1) 的Follower反馈信息后,Leader将再次向集群内Follower广播Commit信息,Commit为将之前的Proposal提交;