蠡口87. Scramble String

旧时模样 提交于 2019-12-01 18:21:08

看到2叉数,想到两组算法:DFS和分治。本题使用分治,答案来自大神basketwang的YouTube解答(https://www.youtube.com/watch?v=Lq3Kr7-qXGI)。希望有一天自己也能独立想出来。

废话不多说,思路是这样: 若S1和S2互为scramble string <=> 存在下标idx,使得下图的两种情况之一成立。

为了证明上述命题成立。先定义"a ~ b"表示a与b互为scrabled string,a可以通过一些旋转变成b(通过二叉树的旋转)。

<=, 右推左):

  其实等价于(a1 ~ b1且a2 ~ b2) 或者 (a1 ~ b2且a2 ~ b1) => a1+a2 ~ b1+b

  Case I: 若a1 ~ b1且a2 ~ b2,那么对于a1+a2 -> 把整个字符分成a1 和a2  -> 先将a1 变成b1,再将a2 变成b-> 连接a1和a2 变换后的string -> b1+b2

  Case II: 若a1 ~ b2且a2 ~ b1,那么对于a1+a-> 把整个字符分成a1 和a2 -> 先将a1 变成b2,再将a2 变成b-> 对换a1和a2 变换后的string再连接 -> b1+b2

=>,左推右):

  反证法: 若S1 ~ S2, 假设不存在分割idx使得Case I或Case II成立,=> 对于任意idx,Case I和Case II都不成立 => 对于所有idx,(S1的前idx个字符不能变换得到S2的前idx个字符,或者S1的后n-idx个字符既不能变换得到S2的后n-idx个字符)而且(S1的前idx个字符不能变换得到S2的后idx个字符,或者S1的后n-idx个字符既不能变换得到S2的前n-idx个字符)。说明S1不能拆分成左右子树,再由左右子树变换之后,连接生成S2,这与S1 ~ S2矛盾。(这个证明好像哪里有点问题,如有错误,欢迎指正)。

 

这样一来,只要通过分解+递归记得求解,代码如下:

class Solution(object):
    def wordCounts(self,s):
        counts={}
        for c in s: counts[c]=0
        for c in s: counts[c]+=1
        return(counts)
    
    def isScramble(self, s1, s2):
        """
        :type s1: str
        :type s2: str
        :rtype: bool
        """
        if s1==s2: return(True)
        n=len(s1)
        counts1=self.wordCounts(s1)
        counts2=self.wordCounts(s2)
        if counts1!=counts2: return(False)
        for idx in range(1,n):
            s1left,s1right=s1[0:idx],s1[idx:]
            if self.isScramble(s1left,s2[0:idx]) and self.isScramble(s1right,s2[idx:]): return(True)
            if self.isScramble(s1left,s2[(n-idx):]) and self.isScramble(s1right,s2[0:(n-idx)]): return(True)
        return(False)

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!