洛谷P4427
题意:
给你一个数,然后让你求这两个数之间的点的深度的k次方和.
#思路:
很容易想到lca.因为lca可以说是求树上两个点的距离的好方法.而且lca还能遍历每一个点.
然后我们可以用一个数组pre来存储每一个点到深度的多少次方.
处理的时候在求深度的时候直接暴力求就行.
# code:
#include <bits/stdc++.h> #define int long long #define N 300010 #define M 1010 #define _ 0 using namespace std; const int mod = 998244353; int n, m, add_edge; bool vis[N]; int fa[N][25], deep[N], head[N << 1], pre[N][51]; struct node { int next, to; }edge[N << 1]; int read() { int s = 0, f = 0; char ch = getchar(); while (!isdigit(ch)) f |= (ch == '-'), ch = getchar(); while (isdigit(ch)) s = s * 10 + (ch ^ 48), ch = getchar(); return f ? -s : s; } int q_pow(int a, int b) { int ans = 1; while (b) { if (b & 1) ans = (ans * a) % mod; a = (a * a) % mod; b >>= 1; } return ans; } void add(int from, int to) { edge[++add_edge].next = head[from]; edge[add_edge].to = to; head[from] = add_edge; } void dfs(int x, int f) { deep[x] = deep[f] + 1, fa[x][0] = f; for (int i = 1; i <= 50; i++) pre[x][i] = (pre[f][i] + q_pow(deep[x], i) + mod) % mod; for (int i = head[x]; i; i = edge[i].next) { int to = edge[i].to; if (to == f) continue; dfs(to, x); } } int lca(int x, int y) { if (deep[x] > deep[y]) swap(x, y); for (int i = 20; i >= 0; i--) if (deep[fa[y][i]] >= deep[x]) y = fa[y][i]; if (x == y) return x; for (int i = 20; i >= 0; i--) if (fa[x][i] != fa[y][i]) x = fa[x][i], y = fa[y][i]; return fa[x][0]; } signed main() { n = read(); for (int i = 1, x, y; i <= n - 1; i++) { x = read(), y = read(); add(x, y), add(y, x); } deep[1] = -1, dfs(1, 1); for (int j = 1; j <= 21; j++) for (int i = 1; i <= n; i++) fa[i][j] = fa[fa[i][j - 1]][j - 1]; m = read(); for (int i = 1, x, y, k; i <= m; i++) { x = read(), y = read(), k = read(); int lc = lca(x, y); int sum1 = (pre[x][k] + pre[y][k] + mod) % mod; int sum2 = (pre[lc][k] + pre[fa[lc][0]][k] + mod) % mod; printf("%lld\n", (sum1 - sum2 + mod) % mod); } return 0; }