开关电源

电源噪声与纹波

懵懂的女人 提交于 2020-03-15 09:48:44
参考来源: https://www.cnblogs.com/duwenqidu/p/11104532.html 纹波 纹波:是附着于直流电平之上的包含周期性与随机性成分的杂波信号。指在额定输出电压、电流的情况下,输出电压中的交流电压的峰值。狭义上的纹波电压,是指输出直流电压中含有的工频交流成分。 噪声 噪声:对于电子线路中所标称的噪声,可以概括地认为,它是对目的信号以外的所有信号的一个总称。最初人们把造成收音机这类音响设备所发出噪声的那些电子信号,称为噪声。但是,一些非目的的电子信号对电子线路造成的后果并非都和声音有关,因而,后来人们逐步扩大了噪声概念。例如,把造成视屏幕有白斑条纹的那些电子信号也称为噪声。可能以说,电路中除目的的信号以外的一切信号,不管它对电路是否造成影响,都可称为噪声。例如,电源电压中的纹波或自激振荡,可对电路造成不良影响,使音响装置发出交流声或导致电路误动作,但有时也许并不导致上述后果。对于这种纹波或振荡,都应称为电路的一种噪声。又有某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的目的信号,而对另一接收机它就是一种非目的信号,即是噪声。在电子学中常使用干扰这个术语,有时会与噪声的概念相混淆,其实,是有区别的。噪声是一种电子信号,而干扰是指的某种效应,是由于噪声原因对电路造成的一种不良反应。而电路中存在着噪声,却不一定就有干扰。在数字电路中

单端正激变换器

夙愿已清 提交于 2020-03-10 18:05:14
一、单端正激变换器的工作原理          高频变压器副边开关整流器的接线,主要是使功率管Q1导通时,副边整流管D1也导通,电网向负载RL输送能量。此时输出滤波电感L0储存能量,当Q1截止时,电感的储能通过续流管D2向负载释放。这种原边与副边开关管同时导通想负载输送能量的方式称之为“单端正激式变换器”。副边结构与半桥双端电路相近。不同之处在于Q1截止期为了维持电感电流,副边电路必须设置一个续流二极管D2   T1纯粹是一变压器,输出端要附加一个电感器L0存储能量。通常L0越大,这算到原边的电感量就越大,是原边电流越小。在变压器中附加了一个去磁绕组N3。作用为去磁复位。因为单端正激变换器的高频变压器,其磁通也是工作在磁滞回线的一侧。所以必须遵循磁通复位原则   当电路去掉去磁绕组N3时,Q1截止期间,在T1中存储的能量导致Q1承受很高的电压幅值;并且在瞬态过程中高平变压器的漏感也引起管段电压尖峰叠加在Q1上容易击穿Q1,所以必须采用电邮去磁绕组的二极管钳位电路,吧原边高压限制在允许范围内。 为什么要磁通复位: 通常情况下单端反激式的用得比较多,而单端正激式的用得少。在单端正激式 开关电源 中通常用绕组复位,而也加CD来进行尖峰吸收。至于为什么要用绕组复位,因为单端的 开关电源 绕组中的电流是脉冲,单向,而非双向的交流。单端反激式的 开关电源

开关电源MOS管选型500V、600V、650V参数

雨燕双飞 提交于 2020-01-15 19:03:17
MOS管 最常见的应用可能是电源中的开关元件,此外,它们对电源输出也大有裨益。服务器和通信设备等应用一般都配置有多个并行电源,以支持N+1 冗余与持续工作 (图1)。各并行电源平均分担负载,确保系统即使在一个电源出现故障的情况下仍然能够继续工作。不过,这种架构还需要一种方法把并行电源的输出连接在一起,并保证某个电源的故障不会影响到其它的电源。在每个电源的输出端,有一个功率MOS管可以让众电源分担负载,同时各电源又彼此隔离 。起这种作用的MOS管被称为"ORing"FET,因为它们本质上是以 “OR” 逻辑来连接多个电源的输出。 开关电源MOS管选型 一、开关电源上的MOS管选择方法 图1:用于针对N+1冗余拓扑的并行电源控制的MOS管 在ORing FET应用中,MOS管的作用是开关器件,但是由于服务器类应用中电源不间断工作,这个开关实际上始终处于导通状态。其开关功能只发挥在启动和关断,以及电源出现故障之时 。 相比从事以开关为核心应用的设计人员,ORing FET应用设计人员显然必需关注MOS管的不同特性。以服务器为例,在正常工作期间,MOS管只相当于一个导体。因此,ORing FET应用设计人员最关心的是最小传导损耗。 二、低RDS(ON) 可把BOM及PCB尺寸降至最小 一般而言,MOS管制造商采用RDS(ON) 参数来定义导通阻抗;对ORing FET应用来说,RDS(ON

ob2500pcp电源代换芯片PN8370/PN8680

落花浮王杯 提交于 2019-12-26 14:58:14
OB2500PCP 可以用PN8370 替代 ,2-3 接短路即可,推荐应用: 12V 1A 用PN8370M 5V 2.1A 用PN8370F 5V 2.4A 用PN8370H OB2500POP 可以用PN8680 替代 PN8680M 推荐应用:12V 1A PN8680F 推荐应用:5V 2.1A PN8680P 推荐应用:5V 2.4A PN8370/PN8680以体积小、重量轻、效率高等特点被广泛应用于开关电源适配器、电池充电器、机顶盒电源等电子设备,如果需要PN8370/PN8680产品的详细手册或其他方案资料,请向骊微电子申请。>> 来源: 51CTO 作者: 骊微电子 链接: https://blog.51cto.com/14408612/2461936

电源模块PCB设计

大城市里の小女人 提交于 2019-12-25 03:11:39
电源模块的PCB设计 电源电路是一个电子产品的重要组成部分,电源电路设计的好坏,直接牵连产品性能的好坏。我们电子产品的电源电路主要有线性电源和高频开关电源。从理论上讲,线性电源是用户需要多少电流,输入端就要提供多少电流;开关电源是用户需要多少功率,输入端就提供多少功率。 线性电源 线性电源功率器件工作在线性状态,如我们常用的稳压芯片LM7805、LM317、SPX1117等。下图一是LM7805稳压电源电路原理图。 图一 线性电源原理图 从图上可知,线性电源有整流、滤波、稳压、储能等功能元件组成,同时,一般用的线性电源为串联稳压电源,输出电流等于输入电流,I1=I2+I3,I3是参考端,电流很小,因此I1≈I3。我们为什么要讲电流,是因为PCB设计时,每条线的宽度不是随便设的,是要根据原理图里元件节点间的电流大小来确定的(请查《PCB设计铜铂厚度、线宽和电流关系表》)。电流大小、电流流向要搞清楚,做板才恰到好处。 PCB设计时,元件的布局要紧凑,要让所有的连线尽可能短,要按原理图元件功能关系去布局元件与走线。本电源图里就是先整流、再滤波、滤波后才是稳压、稳压后才是储能电容、流经电容后才给后面的电路用电。图二是上面原理图的PCB图,两个图相似。左图和右图就是走线有点不一样,左图的电源经整流后直接就到了稳压芯片的输入脚了,然后才是稳压电容,这里电容所起的滤波效果就差了很多,输出也有问题

开关电源EMC必须掌握的几个基本概念

一笑奈何 提交于 2019-12-19 11:35:13
【推荐】2019 Java 开发者跳槽指南.pdf(吐血整理) >>> 电磁干扰的产生与传输 电磁干扰传输有两种方式:一种是传导传输方式,另一种则是辐射传输方式。传导传输是在干扰源和敏感设备之间有完整的电路连接,干扰信号沿着连接电路传递到接收器而发生电磁干扰现象。 辐射传输是干扰信号通过介质以电磁波的形式向外传播的干扰形式。常见的辐射耦合有三种:1)一个天线发射的电磁波被另一个天线意外地接收,称为天线对天线的耦合;2)空间电磁场经导线感应而耦合,称为场对线的耦合。3)两根平等导线之间的高频信号相互感应而形成的耦合,称为线对线的感应耦合。 电磁干扰的产生机理 从被干扰的敏感设备角度来说,干扰耦合又可分为传导耦合和辐射耦合两类。 ● 传导耦合模型 传导耦合按其原理可分为电阻性耦合、电容性耦合和电感性耦合三种基本耦合方式。 ● 辐射耦合模型 辐射耦合是干扰耦合的另一种方式,除了从干扰源发出的有意辐射外,还有大量的无意辐射。同时,PCB板上的走线无论是电源线、信号线、时钟线、数据线或者控制线等,都能起到天线的效果,即可辐射出干扰波,又可起到接收作用。 电磁干扰控制技术 ①传输通道抑制 ● 滤波:在设计和选用滤波器时应注意频率特性、耐压性能、额定电流、阻抗特性、屏蔽和可靠性。滤波器的安装正确与否对其插入损耗特性影响很大,只有安装位置恰当,安装方法正确,才能对干扰起到预期的滤波作用

LM2596开关电源 多路开关电源 DC-DC降压电源 固定/可调输出 原理图和PCB

[亡魂溺海] 提交于 2019-12-15 10:38:41
LM2596开关电源 多路开关电源 DC-DC降压电源 固定/可调输出 原理图和PCB 目录 LM2596开关电源 多路开关电源 DC-DC降压电源 固定/可调输出 原理图和PCB 基本原理 芯片选型 原理图&3D-PCB 具体讲解 模块原理图-PDF、原理图库、3D-PCB库下载 基本原理 开关电源的基本原理就不做赘述,有兴趣的可以看下我们TPS5430正负电源的原理简介即可。 芯片选型 LM2596最大负载电流能到3A,有多个规格可选,3.3V、5V、12V以及可调输出等,ADJ输出范围是1.2V到Vin-1V,最大可支持40V输入,也有特殊规格比如LM2596-HVS,可达60V的输入的电压,但是容易买到假芯片。这个大家都懂的。我们可以大致看出芯片的价格相对比较便宜,所以在普通使用场合,该芯片的性价比还是可以的。 原理图&3D-PCB 在原理图方面基本没有这个特别介绍,主要是布局以及PCB布线的讲解。 具体讲解 1、原理图需要注意电容以及二极管的方向,至于耐压、封装以及选型问题可以参考TPS5430开关电源分析。 2、这边截取了一路的布局以及走线作为示意。 首先C10和C12为电源输入滤波,应该尽量靠近芯片输入端,其次是输入的线应该尽量的粗,才能满足大电流。 3、芯片的第5脚是GND脚,需要在旁边放两个接地的过孔,这样有利于电流的释放接入背面的GND平面。 4

TPS5430开关电源 正负电源 低噪声设计 选材分析 布局布线分析 原理图PCB分析

早过忘川 提交于 2019-12-13 02:10:29
TPS5430开关电源 正负电源 低噪声设计 选材分析 布局布线分析 原理图PCB分析 目录 TPS5430开关电源 正负电源 低噪声设计 选材分析 布局布线分析 原理图PCB分析 基本原理 芯片选型 原理图&3D-PCB 具体讲解 模块原理图-PDF、原理图库、PCB库下载 基本原理 开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态。具体的原理我们不做详解。开关电源相对于线性电源有体积小、重量轻、效率高等优点,但缺点会产生不小的开关噪声,也就是常说的电源纹波。 芯片选型 今天要介绍的是TI(德州仪器)的电源芯片TPS5430。 1、输入电压宽( 5.5 V to 36 V) 2、负载能力强,高达3A的输出电流(峰值可达5A) 3、高效率,芯片标称最高可实现95%的效率 4、宽范围输出,最低可以输出1.22V 如果需要更大电流的话可以使用TPS5450替代,输出电流最大可扩展到5A,但是电感电容等选型也需要对应更高指标。 原理图&3D-PCB 这里我们设计的电路为正负电源输出,也就是正电压为降压输出,负电压为反压输出。负电压输出由于存在2倍压差,所以一般来说,电源纹波也会比正压降压的大2倍以上。图中VDD为正压输出,VEE为负压输出。 具体讲解 1、正压降压,原理图参考下图,输入C4

EMI整改经验小结

雨燕双飞 提交于 2019-12-06 06:57:47
开关电源EMI 整改中,关于不同频段干扰原因及抑制办法: 1MHZ 以内----以差模干扰为主 1.增大X 电容量; 2.添加差模电感; 3.小功率电源可采用PI 型滤波器处理(建议靠近变压器的电解电容可 选用较大些)。 1MHZ—5MHZ—差模共模混合,采用输入端并联一系列X 电容来滤除差摸干扰并分析出是哪种干扰超标并以解决, 1.对于差模干扰超标可调整X 电容量,添加差模电感器,调差模电感 量; 2.对于共模干扰超标可添加共模电感,选用合理的电感量来抑制; 3.也可改变整流二极管特性来处理一对快速二极管如FR107 一对普 通整流二极管1N4007。 5M—以上以共摸干扰为主,采用抑制共摸的方法。对于外壳接地的,在地线上用一个磁环串绕2-3 圈会对10MHZ 以上干扰有较大的衰减作用;可选择紧贴变压器的铁芯粘铜箔, 铜箔闭环.处理后端输出整流管的吸收电路和初级大电路并联电容的大小。 对于20–30MHZ, 1.对于一类产品可以采用调整对地Y2 电容量或改变Y2 电容位置; 2.调整一二次侧间的Y1 电容位置及参数值; 3.在变压器外面包铜箔;变压器最里层加屏蔽层;调整变压器的各绕 组的排布。 4.改变PCB LAYOUT; 5.输出线前面接一个双线并绕的小共模电感; 6.在输出整流管两端并联RC 滤波器且调整合理的参数; 7.在变压器与MOSFET 之间加BEAD CORE;

开关电源中的EMI抑制

旧城冷巷雨未停 提交于 2019-12-06 06:01:10
EMI(电磁干扰):从一个电路到另一个电路的耦合干扰,主要分为传导EMI(通过传输阻抗,电源线和地线等产生的耦合),辐射EMI(通过无线信号产生的耦合)。 EMC(电磁兼容):一个电气系统在其内部EMI或者外部EMI环境中仍能正常工作。 噪声源通过传导、辐射、电场和磁场这几种路径影响电源系统。 开关电源中辐射和传导主要来源:开关管频繁开关,电流路径中的寄生电容和寄生电感,未屏蔽的环境。 小环形天线的能量计算公式如下图: 所以在PCB中可通过以下操作来减少噪声源:(1)减小di/dt中的高频分量和开关频率;(2)减小包含高频线路的环路面积; PCB布局中优化EMI的步骤: (1)确定关键路径。降压电路在输入端;升压在输出端;升降压在输入输出端均有。如下图 (2)确定元器件放置位置,使得高频路径短而粗 (3)返回电流选取具有最小阻抗的路径,完整的接地平面可提供镜像回流路径 除了通过PCB布局来减少噪声源的方法之外,还可以通过保护敏感节点的方法: (1)利用地平面或者电源平面进行屏蔽,可用多层板 (2)采样电路、补偿RC和反馈远离SW端 (3)信号线远离高di/dt路径 此外,还可以通过EMI滤波器减少输入端的噪声。EMI滤波器的详细设计可参考应用指南AN-2162 这个一个简易的EMI滤波器,可有效抑制传导EMI,也就是我们常说的Π型滤波。 来源: CSDN 作者: