打开官方下载链接 http://hadoop.apache.org/releases.html#Download ,选择2.2.0版本的发布包下载后解压到指定路径下:
$ tar -zxf hadoop-2.2.0.tar.gz -C /usr/local/
$ cd /usr/local
$ ln -s hadoop-2.2.0 hadoop
那么本文中HADOOP_HOME = /usr/local/hadoop/.
3、配置hadoop用户的环境变量 vi ~/.bash_profile ,添加如下内容:
# set java environment
export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk.x86_64
export CLASSPATH=.:$CLASSPATH:$JAVA_HOME/lib:$JAVA_HOME/jre/lib
export PATH=$PATH:$JAVA_HOME/bin:$JAVA_HOME/jre/bin
# Michael@micmiu.com
# Hadoop
export HADOOP_PREFIX="/usr/local/hadoop"
export PATH=$PATH:$HADOOP_PREFIX/bin:$HADOOP_PREFIX/sbin
export HADOOP_COMMON_HOME=${HADOOP_PREFIX}
export HADOOP_HDFS_HOME=${HADOOP_PREFIX}
export HADOOP_MAPRED_HOME=${HADOOP_PREFIX}
export HADOOP_YARN_HOME=${HADOOP_PREFIX}
4、编辑 <HADOOP_HOME>/etc/hadoop/hadoop-env.sh
修改JAVA_HOME的配置:
export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk.x86_64
5、编辑 <HADOOP_HOME>/etc/hadoop/yarn-env.sh
修改JAVA_HOME的配置:
export JAVA_HOME=/usr/lib/jvm/java-1.6.0-openjdk.x86_64
6、编辑 <HADOOP_HOME>/etc/hadoop/core-site.xml
在<configuration>节点下添加或者更新下面的配置信息:
<!-- 新变量f:s.defaultFS 代替旧的:fs.default.name |micmiu.com-->
<property>
<name>fs.defaultFS</name>
<value>hdfs://Master.Hadoop:9000</value>
<description>The name of the default file system.</description>
</property>
<property>
<name>hadoop.tmp.dir</name>
<!-- 注意创建相关的目录结构 -->
<value>/usr/local/hadoop/temp</value>
<description>A base for other temporary directories.</description>
</property>
7、编辑<HADOOP_HOME>/etc/hadoop/hdfs-site.xml
在<configuration>节点下添加或者更新下面的配置信息:
<property>
<name>dfs.replication</name>
<!-- 值需要与实际的DataNode节点数要一致,本文为3 -->
<value>3</value>
</property>
<property>
<name>dfs.namenode.name.dir</name>
<!-- 注意创建相关的目录结构 -->
<value>file:/usr/local/hadoop/dfs/name</value>
<final>true</final>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<!-- 注意创建相关的目录结构 -->
<value>file:/usr/local/hadoop/dfs/data</value>
</property>
8、编辑<HADOOP_HOME>/etc/hadoop/yarn-site.xml
在<configuration>节点下添加或者更新下面的配置信息:
<!-- micmiu.com -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<!-- resourcemanager hostname或ip地址-->
<property>
<name>yarn.resourcemanager.hostname</name>
<value>Master.Hadoop</value>
</property>
9、编辑 <HADOOP_HOME>/etc/hadoop/mapred-site.xml
默认没有mapred-site.xml文件,copy mapred-site.xml.template 一份为 mapred-site.xml即可
在<configuration>节点下添加或者更新下面的配置信息:
<!-- micmiu.com -->
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
<final>true</final>
</property>
[三]、启动和测试
1、启动Hadoop
1.1、第一次启动需要在Master.Hadoop 执行format hdfs namenode -format :
[hadoop@Master ~]$ hdfs namenode -format
14/01/22 15:43:10 INFO namenode.NameNode: STARTUP_MSG:
/************************************************************
STARTUP_MSG: Starting NameNode
STARTUP_MSG: host = Master.Hadoop/192.168.6.77
STARTUP_MSG: args = [-format]
STARTUP_MSG: version = 2.2.0
STARTUP_MSG: classpath =
........................................
............micmiu.com.............
........................................
STARTUP_MSG: java = 1.6.0_20
************************************************************/
14/01/22 15:43:10 INFO namenode.NameNode: registered UNIX signal handlers for [TERM, HUP, INT]
Formatting using clusterid: CID-645f2ed2-6f02-4c24-8cbc-82b09eca963d
14/01/22 15:43:11 INFO namenode.HostFileManager: read includes:
HostSet(
)
14/01/22 15:43:11 INFO namenode.HostFileManager: read excludes:
HostSet(
)
14/01/22 15:43:11 INFO blockmanagement.DatanodeManager: dfs.block.invalidate.limit=1000
14/01/22 15:43:11 INFO util.GSet: Computing capacity for map BlocksMap
14/01/22 15:43:11 INFO util.GSet: VM type = 64-bit
14/01/22 15:43:11 INFO util.GSet: 2.0% max memory = 888.9 MB
14/01/22 15:43:11 INFO util.GSet: capacity = 2^21 = 2097152 entries
14/01/22 15:43:11 INFO blockmanagement.BlockManager: dfs.block.access.token.enable=false
14/01/22 15:43:11 INFO blockmanagement.BlockManager: defaultReplication = 3
14/01/22 15:43:11 INFO blockmanagement.BlockManager: maxReplication = 512
14/01/22 15:43:11 INFO blockmanagement.BlockManager: minReplication = 1
14/01/22 15:43:11 INFO blockmanagement.BlockManager: maxReplicationStreams = 2
14/01/22 15:43:11 INFO blockmanagement.BlockManager: shouldCheckForEnoughRacks = false
14/01/22 15:43:11 INFO blockmanagement.BlockManager: replicationRecheckInterval = 3000
14/01/22 15:43:11 INFO blockmanagement.BlockManager: encryptDataTransfer = false
14/01/22 15:43:11 INFO namenode.FSNamesystem: fsOwner = hadoop (auth:SIMPLE)
14/01/22 15:43:11 INFO namenode.FSNamesystem: supergroup = supergroup
14/01/22 15:43:11 INFO namenode.FSNamesystem: isPermissionEnabled = true
14/01/22 15:43:11 INFO namenode.FSNamesystem: HA Enabled: false
14/01/22 15:43:11 INFO namenode.FSNamesystem: Append Enabled: true
14/01/22 15:43:11 INFO util.GSet: Computing capacity for map INodeMap
14/01/22 15:43:11 INFO util.GSet: VM type = 64-bit
14/01/22 15:43:11 INFO util.GSet: 1.0% max memory = 888.9 MB
14/01/22 15:43:11 INFO util.GSet: capacity = 2^20 = 1048576 entries
14/01/22 15:43:11 INFO namenode.NameNode: Caching file names occuring more than 10 times
14/01/22 15:43:11 INFO namenode.FSNamesystem: dfs.namenode.safemode.threshold-pct = 0.9990000128746033
14/01/22 15:43:11 INFO namenode.FSNamesystem: dfs.namenode.safemode.min.datanodes = 0
14/01/22 15:43:11 INFO namenode.FSNamesystem: dfs.namenode.safemode.extension = 30000
14/01/22 15:43:11 INFO namenode.FSNamesystem: Retry cache on namenode is enabled
14/01/22 15:43:11 INFO namenode.FSNamesystem: Retry cache will use 0.03 of total heap and retry cache entry expiry time is 600000 millis
14/01/22 15:43:11 INFO util.GSet: Computing capacity for map Namenode Retry Cache
14/01/22 15:43:11 INFO util.GSet: VM type = 64-bit
14/01/22 15:43:11 INFO util.GSet: 0.029999999329447746% max memory = 888.9 MB
14/01/22 15:43:11 INFO util.GSet: capacity = 2^15 = 32768 entries
14/01/22 15:43:11 INFO common.Storage: Storage directory /usr/local/hadoop/dfs/name has been successfully formatted.
14/01/22 15:43:11 INFO namenode.FSImage: Saving image file /usr/local/hadoop/dfs/name/current/fsimage.ckpt_0000000000000000000 using no compression
14/01/22 15:43:11 INFO namenode.FSImage: Image file /usr/local/hadoop/dfs/name/current/fsimage.ckpt_0000000000000000000 of size 198 bytes saved in 0 seconds.
14/01/22 15:43:11 INFO namenode.NNStorageRetentionManager: Going to retain 1 images with txid >= 0
14/01/22 15:43:11 INFO util.ExitUtil: Exiting with status 0
14/01/22 15:43:11 INFO namenode.NameNode: SHUTDOWN_MSG:
/************************************************************
SHUTDOWN_MSG: Shutting down NameNode at Master.Hadoop/192.168.6.77
************************************************************/
1.2、在Master.Hadoop执行 start-dfs.sh :
[hadoop@Master ~]$ start-dfs.sh
Starting namenodes on [Master.Hadoop]
Master.Hadoop: starting namenode, logging to /usr/local/hadoop-2.2.0/logs/hadoop-hadoop-namenode-Master.Hadoop.out
Slave7.Hadoop: starting datanode, logging to /usr/local/hadoop-2.2.0/logs/hadoop-hadoop-datanode-Slave7.Hadoop.out
Slave5.Hadoop: starting datanode, logging to /usr/local/hadoop-2.2.0/logs/hadoop-hadoop-datanode-Slave5.Hadoop.out
Slave6.Hadoop: starting datanode, logging to /usr/local/hadoop-2.2.0/logs/hadoop-hadoop-datanode-Slave6.Hadoop.out
Starting secondary namenodes [0.0.0.0]
0.0.0.0: starting secondarynamenode, logging to /usr/local/hadoop-2.2.0/logs/hadoop-hadoop-secondarynamenode-Master.Hadoop.out
在Master.Hadoop 验证启动进程:
[hadoop@Master ~]$ jps
7695 Jps
7589 SecondaryNameNode
7403 NameNode
在SlaveX.Hadop 验证启动进程如下:
[hadoop@Slave5 ~]$ jps
8724 DataNode
8815 Jps
1.3、在Master.Hadoop 执行 start-yarn.sh :
[hadoop@Master ~]$ start-yarn.sh
starting yarn daemons
starting resourcemanager, logging to /usr/local/hadoop-2.2.0/logs/yarn-hadoop-resourcemanager-Master.Hadoop.out
Slave7.Hadoop: starting nodemanager, logging to /usr/local/hadoop-2.2.0/logs/yarn-hadoop-nodemanager-Slave7.Hadoop.out
Slave5.Hadoop: starting nodemanager, logging to /usr/local/hadoop-2.2.0/logs/yarn-hadoop-nodemanager-Slave5.Hadoop.out
Slave6.Hadoop: starting nodemanager, logging to /usr/local/hadoop-2.2.0/logs/yarn-hadoop-nodemanager-Slave6.Hadoop.out
在Master.Hadoop 验证启动进程:
[hadoop@Master ~]$ jps
8071 Jps
7589 SecondaryNameNode
7821 ResourceManager
7403 NameNode
在SlaveX.Hadop 验证启动进程如下:
[hadoop@Slave5 ~]$ jps
9013 Jps
8724 DataNode
8882 NodeManager
2、演示
2.1、演示hdfs 一些常用命令,为wordcount演示做准备:
[hadoop@Master ~]$ hdfs dfs -ls /
[hadoop@Master ~]$ hdfs dfs -mkdir /user
[hadoop@Master ~]$ hdfs dfs -mkdir -p /user/micmiu/wordcount/in
[hadoop@Master ~]$ hdfs dfs -ls /user/micmiu/wordcount
Found 1 items
drwxr-xr-x - hadoop supergroup 0 2014-01-22 16:01 /user/micmiu/wordcount/in
2.2、本地创建三个文件 micmiu-01.txt、micmiu-03.txt、micmiu-03.txt, 分别写入如下内容:
micmiu-01.txt:
Hi Michael welcome to Hadoop
more see micmiu.com
micmiu-02.txt:
Hi Michael welcome to BigData
more see micmiu.com
micmiu-03.txt:
Hi Michael welcome to Spark
more see micmiu.com
把 micmiu 打头的三个文件上传到hdfs:
[hadoop@Master ~]$ hdfs dfs -put micmiu*.txt /user/micmiu/wordcount/in
[hadoop@Master ~]$ hdfs dfs -ls /user/micmiu/wordcount/in
Found 3 items
-rw-r--r-- 3 hadoop supergroup 50 2014-01-22 16:06 /user/micmiu/wordcount/in/micmiu-01.txt
-rw-r--r-- 3 hadoop supergroup 50 2014-01-22 16:06 /user/micmiu/wordcount/in/micmiu-02.txt
-rw-r--r-- 3 hadoop supergroup 49 2014-01-22 16:06 /user/micmiu/wordcount/in/micmiu-03.txt
2.3、然后cd 切换到Hadoop的根目录下执行:
hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /user/micmiu/wordcount/in /user/micmiu/wordcount/out
ps: hdfs 中 /user/micmiu/wordcount/out 目录不能存在 否则运行报错。
看到类似如下的日志信息:
[hadoop@Master hadoop]$ hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /user/micmiu/wordcount/in /user/micmiu/wordcount/out
14/01/22 16:36:28 INFO client.RMProxy: Connecting to ResourceManager at Master.Hadoop/192.168.6.77:8032
14/01/22 16:36:29 INFO input.FileInputFormat: Total input paths to process : 3
14/01/22 16:36:29 INFO mapreduce.JobSubmitter: number of splits:3
............................
.....micmiu.com........
............................
File System Counters
FILE: Number of bytes read=297
FILE: Number of bytes written=317359
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=536
HDFS: Number of bytes written=83
HDFS: Number of read operations=12
HDFS: Number of large read operations=0
HDFS: Number of write operations=2
Job Counters
Launched map tasks=3
Launched reduce tasks=1
Data-local map tasks=3
Total time spent by all maps in occupied slots (ms)=55742
Total time spent by all reduces in occupied slots (ms)=3933
Map-Reduce Framework
Map input records=6
Map output records=24
Map output bytes=243
Map output materialized bytes=309
Input split bytes=387
Combine input records=24
Combine output records=24
Reduce input groups=10
Reduce shuffle bytes=309
Reduce input records=24
Reduce output records=10
Spilled Records=48
Shuffled Maps =3
Failed Shuffles=0
Merged Map outputs=3
GC time elapsed (ms)=1069
CPU time spent (ms)=12390
Physical memory (bytes) snapshot=846753792
Virtual memory (bytes) snapshot=5155561472
Total committed heap usage (bytes)=499580928
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=149
File Output Format Counters
Bytes Written=83
到此 wordcount的job已经执行完成,执行如下命令可以查看刚才job的执行结果:
[hadoop@Master hadoop]$ hdfs dfs -ls /user/micmiu/wordcount/out
Found 2 items
-rw-r--r-- 3 hadoop supergroup 0 2014-01-22 16:38 /user/micmiu/wordcount/out/_SUCCESS
-rw-r--r-- 3 hadoop supergroup 83 2014-01-22 16:38 /user/micmiu/wordcount/out/part-r-00000
[hadoop@Master hadoop]$ hdfs dfs -cat /user/micmiu/wordcount/out/part-r-00000
BigData 1
Hadoop 1
Hi 3
Michael 3
Spark 1
micmiu.com 3
more 3
see 3
to 3
welcome 3
打开浏览器输入:http://192.168.6.77(Master.Hadoop):8088 可查看相关的应用运行情况。
来源:oschina
链接:https://my.oschina.net/u/562583/blog/228981